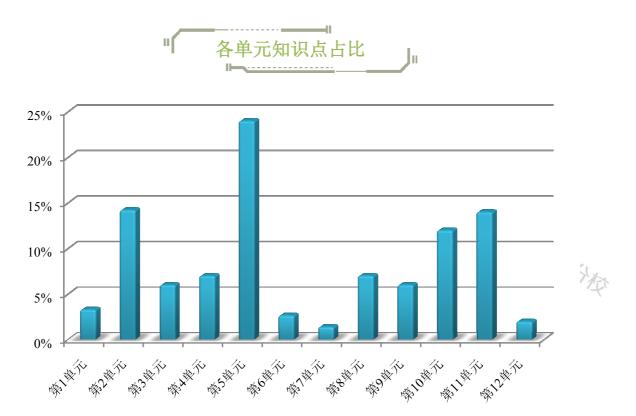
2020 年深圳市中考化学试卷分析

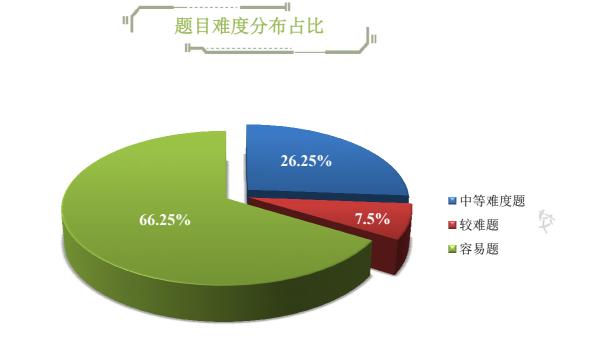
试卷点评

学所思语法 今年的化学试卷与往年相比,难度基本持平,在知识点的考查方面注重基础,但是题目形式都比较新 颖。

选择题方面,化学式分析、生活常识、反应原理与现象和实验分析的考查基本沿用了往年固定的出题 思路和考点,但是反应微观示意图、溶解度曲线的题目形式比较新颖,往年固定考查的化学用语则和元素 信息合并为一道题目,同时多了物质的性质和用途的考查。物质除杂已经连续两年进行考查,且这类题目 对反应原理的理解要求较高,从这个命题趋势来看,物质除杂很有可能成为以后考查的常规题型。

推断题今年考查了工业流程的理解,但是流程图比较容易理解,且下面的问题考查除了信息型方程式 外,均为基础知识点,难度非常小。这次信息型方程式的书写需要学生注意题目中给出的2个反应条件以 及配平。


实验题今年比较意外、完全是基础知识的考查、主要看学生的总结归纳能力、没有进行发散。


计算题的仍然采用了图象模式,但是仅仅是分析图象,与计算数据无关,计算方面则加重了质量守恒 定律的考查以及对题意的理解,整体难度有所下降。

	3	试卷难度分析、知识范围、难图	度情况分析表	
题型	题号	考点	难度	分值
	1	知识综合	*	1.5
	2	元素信息与化学用语	*	1.5
	3	化学与生活	*	1.5
	4	物质的性质与用途	*	1.5
选 择	5	化学式分析	*	1.5
题	6	实验分析	*	1.5 1.5
	7	反应微观示意图	*	1.5
	8	溶解度曲线	**	1.5
	9	物质除杂	***	1.5
	10	反应的原理与现象	***	1.5
推断题	11	化学实验	*	8
实验题	12	工业流程	*	8
计算题	13	综合计算	**	9
学门		(B) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	学所問语	[[]]

2020 年深圳中考试卷分析

	近三年中考化学试题命题趋势分析和稳定性对比			
题号	2018 考点	2019 考点	2020 考点	分值
1	化学用语	化学与生活	知识综合	1.5
2	化学与生活	化学用语	元素信息与化学用语	1.5
3	知识综合	实验分析	化学与生活	1.5
4	反应原理与现象	元素信息	物质的性质与用途	1.5
5	实验分析	反应微观示意图	化学式分析	1.5
6	元素信息	反应原理与现象	实验分析	1.5
7	化学式分析	化学式分析	反应微观示意图	1.5
8	反应微观示意图	实验分析	溶解度曲线	1.5
9	溶解度曲线	溶解度曲线	物质除杂	1.5
10	物质除杂	物质转化	反应的原理与现象	1.5
11	物质推断	工业流程	化学实验	8
12	化学实验	化学实验	工业流程	8
13	综合计算	综合计算	综合计算	9

2020 深圳市中考化学试题与解析

- 一、选择题(共10小题,每小题1.5分,共15分。在每小题给出的4个选项中,只有一项符合题意。)
- 1. 下列描述正确的是(
 - A. "滴水成冰"是化学变化
 - B. "花香四溢"表明分子在不断运动
 - C. "釜底抽薪"是为了降低可燃物的着火点
 - D. "百炼成钢"指生铁经多次煅炼转化为纯铁

【答案】B

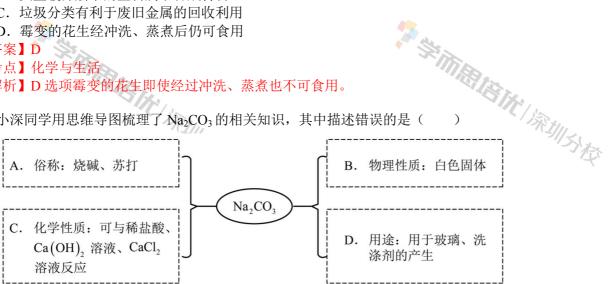
【考点】知识综合

学所剧语作为 【解析】A 选项为物理变化; C 选项"釜底抽薪"是移走了可燃物; D 选项生铁变成钢是降低了碳含量, 得到的钢仍然为混合物。

- 2. 右图为铕在元素周期表中的相关信息,下列有关铕的说法正确的是(
 - A. 铕原子中的质子数为 63
 - B. 铕的相对原子质量是 152.0g
 - C. 2Eu²⁺表示 2 个铕原子
 - D. Eu₂O₃ 中铕元素的化合价为+6 价

【考点】元素信息与化学用语

【解析】B 选项铕的相对原子质量为 152.0; C 选项 $2Eu^{2+}$ 表示 2 个铕离子; D 选项 Eu_2O_3 中铕元素的化合 价为+3 价。


- 3. 化学与人类的科学技术、生产生活密切相关。下列说法错误的是(
 - A. 钛合金可应用于火箭和航天飞机
 - B. 头盔缓冲层中的塑料属于合成材料
 - C. 垃圾分类有利于废旧金属的回收利用
 - D. 霉变的花生经冲洗、蒸煮后仍可食用

【答案】D

【考点】化学与生活

【解析】D选项霉变的花生即使经过冲洗、蒸煮也不可食用。

4. 小深同学用思维导图梳理了 Na₂CO₃ 的相关知识, 其中描述错误的是(

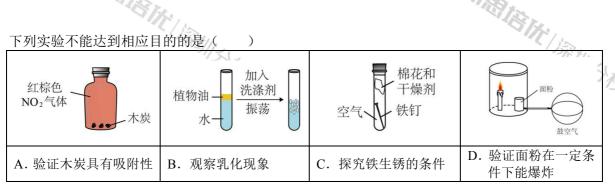
【答案】A

【考点】物质的性质与用途

【解析】A 选项中烧碱是 NaOH 的俗称。

🎔 学而思培化 | 深圳分校|

2020 年深圳中考试卷分析

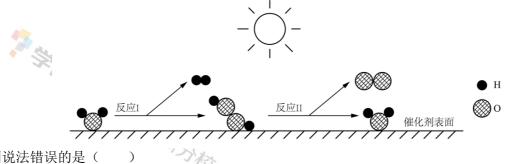

- 5. "艾叶香,香满堂;粽子香,香厨房。"据研究,粽子的香味源于粽叶的主要成分——对乙烯基苯酚(化 学式为 C₈H₈O)。下列说法正确的是(
 - A. 对乙烯基苯酚不属于有机物
 - B. 对乙烯基苯酚由3种元素组成
 - C. 对乙烯基苯酚中 C、H、O 三种元素的质量比为 8:8:1
 - D. 对乙烯基苯酚由 8 个 C 原子、8 个 H 原子、1 个 O 原子构成

【答案】B

【考点】化学式分析

【解析】A 选项中对乙烯基苯酚属于有机物; C 选项中对乙烯基苯酚中 C、H、O 三种元素的质量比为 12 :1:2, D选项应表述为一个对乙烯基苯酚分子由8个碳原子、8个氢原子、1个氧原子构成。

6. 下列实验不能达到相应目的的是(



【答案】C

【考点】实验分析

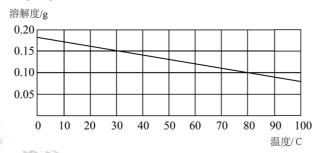
【解析】C选项不能证明铁生锈需要水和氧气,即不能探究铁生锈的条件。

7. 我国化学家研究出一种新型催化剂,在太阳光照射下实现了水的高效分解。该反应过程的微观示意图 如下:

下列说法错误的是(

- A. 表示的物质属于氧化物
- B. 反应 I 的化学方程式为 H₂O ^{催化剂} H₂O₂ + H₂ ↑
- C. 反应 II 中, 反应前后原子的种类和数目均不变
- D. 该成果对氢能源的推广应用有重要的实践意义

【答案】B


【考点】反应微观示意图

【解析】B 选项中的化学方程式没有配平,应为 $2H_2O$ $\frac{\text{@L/N}}{\text{@L/N}}$ $H_2O_2 + H_2 \uparrow$ 。

🎔 学而思培优 | 深圳分校

2020 年深圳中考试卷分析

8. 下图为 Ca(OH)₂ 的溶解度曲线;下表为 20℃时溶解度的相对大小。

溶解度/g	一般称为
< 0.01	难溶
0.01~1	微溶
1~10	可溶
>10	易溶

下列说法正确的是(

- A. Ca(OH)₂属于易溶物质
- B. Ca(OH)₂ 的溶解度随温度的升高而增大

)

- C. 30℃时, Ca(OH)₂ 的饱和溶液中溶质与溶剂的质量比为 3:20
- D. 70℃时 Ca(OH)₂ 的饱和溶液,降温到 50℃时没有析出固体

【答案】D

【考点】溶解度曲线

学师周语[[[]]] 【解析】A 选项中 $Ca(OH)_2$ 属于微溶物质; B 选项中 $Ca(OH)_2$ 的溶解度随温度的升高而减小; C 选项中, 30℃时, Ca(OH)。的饱和溶液中溶质与溶剂的质量比为 3:2000。

9. 下列方法能达到除杂目的的是(

1 / 4/4 (MIBIGES 1) AVAILABLE CO.		
选项	物质 (括号内为杂质)	方法
A	CH ₄ (CO)	点燃混合气体
В	铜粉 (炭粉)	在空气中灼烧固体混合物
С	O ₂ (水蒸气)	将混合气体通过浓硫酸
D	NaCl (CaCl ₂)	加水溶解、过滤

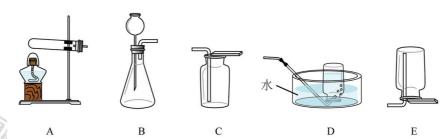
【答案】C

【考点】物质除杂

【解析】A 选项中 CH₄和 CO 均可被点燃;B 选项中在空气中灼烧会使 Cu 变为 CuO;D 选项中 NaCl 和 CaCl。均可溶于水,无法通过过滤的方法分离。

- 10. 如图,将胶头滴管中的物质 X 滴入装有物质 Y 的试管中,两物质充分反应。下列说 法错误的是()
 - A. X 为稀硫酸, 若反应有气泡产生, 则生成的气体一定是 H₂
 - B. X为AgNO₃溶液,Y为Cu片,根据现象可判断金属活动性:Cu>Ag
 - C. X为BaCl₂溶液,Y为Na₂SO₄溶液,反应产生白色沉淀
 - D. X 为稀盐酸, Y 为 Al(OH)₃, 该反应可应用于治疗胃酸过多症

【答案】A


【考点】反应原理与现象

【解析】A 选项中生成的气体也可以是 CO2。

二、非选择题(共3题,共25分)

11. (8分) 初步学习运用简单的装置和方法制取某些气体,是初中学生的化学实验技能应达到的要求。 (1) 某学习小组将实验室制取常见气体的相关知识归纳如下:

The state of the s		*411.65		
气体	方法 (或原理)	发生装置	收集装置	
	方法 1: 加热氯酸钾	均可选择 A 装置	均可选择	
O_2	方法 2: 加热①(填化学式)	(可根据需要添加棉花)	④装	
	方法 3: 分解过氧化氢溶液	均可选择③装置	置(填标	
CO_2	化学方程式为②	(填标号)	号)	

(2) 该小组将制取的 O_2 和 CO_2 (各一瓶) 混淆了,设计如下方案进行区分。

方案	现象	结论
方案 1: 将带火星的木条分别伸入两个集 气瓶中	若带火星的木条①	则该瓶气体是 O ₂
方案 2: 向两个集气瓶中分别滴入少量的 ②	若溶液变浑浊	则该瓶气体是 CO ₂
方案 3: 向两个集气瓶中分别倒入少量的水,振荡后再滴加几滴紫色石蕊溶液	若紫色石蕊溶液变为 ③色	则该瓶气体是 CO ₂

(3) 制取气体的过程包括: a. 选择制取装置; b. 验证所得气体; c. 明确反应原理。据此,该小组总结出实验室里制取气体的一般思路为 (填"甲"或"乙"或"丙")。

 \forall a \rightarrow b \rightarrow c

 \angle . b \rightarrow a \rightarrow c

 \overline{A} . c $\rightarrow a\rightarrow b$

学所思语形

【答案】(1) ①KMnO₄

2CaCO₃ + 2HCl = CaCl₂ + CO₂ \uparrow + H₂O

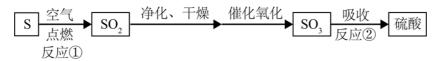
③B

4)C

(2) ①复燃

2Ca(OH)2

3)红


(3) 丙

【考点】化学实验


【解析】本题综合考查了 O_2 和 CO_2 的实验室制取方法、鉴别方法以及实验室制取气体的一般思路。第(1) 问中分解 H_2O_2 和制取 CO_2 都是固液反应,所以选取 B 作为发生装置, O_2 和 CO_2 的密度都比空气大,所以选择 C 作为收集装置;第(2)问中, O_2 具有助燃性,能使带火星的木条复燃, CO_2 能使 $Ca(OH)_2$ 溶液变浑浊,还能使石蕊溶液变红;第(3)问中实验室制取气体,需要先明确反应原理,再决定发生和收集装置,最后进行验证。

2020 年深圳中考试卷分析

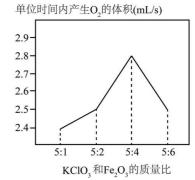
- 12. (8分)下列流程可用于制备硫酸铵。
 - I. 制硫酸:

- (1) 反应①的化学方程式为_____
- (2) 反应②为 $SO_3 + H_2O = H_2SO_4$,该反应属于 反应(填基本反应类型)。
- II. 合成氨:

- (3) "原料气"中 N_2 的制备: N_2 约占空气体积的五分之 ,可通过分离液态空气的方法得到。
- (4) "原料气"中 H_2 的制备,高温时, CH_4 和水蒸气在催化剂作用下反应得到 H_2 和 CO_2 ,该反应的化学方程式为
- (5) NH₃溶于水时形成氨水。室温下,氨水的 pH_____7(填">"或"<")。
- III. 制备硫酸铵:
 - (6) 将 NH₃ 通入稀释后的硫酸溶液中,得到硫酸铵。用水稀释浓硫酸时,需将___ ____缓慢地加入____中,并不断搅拌。
 - (7) (NH₄)₂SO₄ 在农业生产中常被用作 (填标号)。
 - A. 氮肥
- B. 磷肥
- C. 钾肥

【答案】(1) S+O₂ ^{点燃} SO₂

- (2) 化合
- (3) 四
- (4) CH₄ + 2H₂O 催化剂 高温 4H₂ + CO₂
- (5) >
- (6) 浓硫酸; 水
- (7) A


【考点】工业流程

【解析】本题通过工业流程的形式考查了一些基本的知识点。第(4)问中化学方程式的条件需要写高温和催化剂两个条件;第(5)问中 NH₃溶于水会生成 NH₃·H₂O,溶液呈碱性。

学学而思培化 深圳分校

2020 年深圳中考试卷分析

- 13. (9分)氧气是人类生产活动的重要资源。
 - (1) 下列属于 O_2 的化学性质的是 (填标号)。
 - A. O₂能支持燃烧
 - B. O₂的密度比空气的密度略大
 - C. O₂ 在低温、高压时能变为液体或固体
 - (2) 小圳同学进行实验室制备 O₂ 的相关探究。
 - 【查阅】他得知在 $KClO_3$ 分解制 O_2 的反应中, Fe_2O_3 可作催化剂。
 - 【实验】他用电子秤称取 0.49g Fe₂O₃ 和一定量的 KClO₃, 充分混合后加热至 KClO₃ 完全分解, 冷却至室温, 称得剩余固体的质量为 1.98g。
 - 【计算】①剩余固体中 KCl 的质量是_____g。 ②该反应生成 O_2 的质量(根据化学方程式写出完整的计算步骤)。
 - 【思考】他发现制备 O_2 较慢,猜测 $KClO_3$ 和 Fe_2O_3 的质量比可能会影响反应的快慢。
 - 【探究】③他调节 $KClO_3$ 和 Fe_2O_3 的质量比制备 O_2 ,整理数据绘制出 右图,从图中得出 $KClO_3$ 和 Fe_2O_3 最佳质量比是 。

【答案】(1) A

(2) 11.49

②解: 设反应生成
$$O_2$$
 的质量为 x 。 $2KClO_3 \stackrel{F_0,O_3}{\triangle} 2KCl + 3O_2 \uparrow$ 149 96 $1.49g$ x $\frac{149}{96} = \frac{1.49g}{x}$ $x = 0.96g$

答: 反应生成 O₂的质量为 0.96g。

35:4

(4)2.45; 5:1

- 【考点】物质的性质、图象分析和化学方程式计算。
- 【解析】本题主要考查了学生对图象的理解和质量守恒定律的应用,【结论】中,根据质量守恒定律,将 【实验】中剩余固体的质量 1.98g 和【计算】中 O₂ 的质量 0.96g 相加,即可得到 KClO₃ 的质量为 2.45g。