圆锥曲线应对策略 (二)

-、解答

- 1 (12分)已知椭<mark>圆的中心</mark>在原点,焦点在x轴上,经过点 $P(\sqrt{2},1)$ 且离心率 $e=rac{\sqrt{2}}{2}$.过定点 C(-1,0)的直线与椭圆相交于A, B两点.
 - (1) (4分) 求椭圆的方程.
 - (2) (8分) 在x轴上是否存在点M, 使 $\overrightarrow{MA} \cdot \overrightarrow{MB}$ 为常数? 若存在,求出 \overrightarrow{L} 成的坐标;若不存 在,请说明理由.

- 答案 (1) $\frac{x^2}{4} + \frac{y^2}{2} = 1$.
 - (2) 存在定点 $M(-\frac{7}{4},0)$.

(1) 设椭圆<mark>方程为 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ (a > b > 0)$ </mark>

由已知可得 $\begin{cases} a^2 = b^2 + c^2 \\ \frac{c}{a} = \frac{\sqrt{2}}{2} \end{cases}$,解得 $a^2 = 4, b^2 = 2$.所求椭圆的方程为 $\frac{x^2}{4} + \frac{y^2}{2} = 1$.

(2) $\partial A(x_1, y_1), B(x_2, y_2), M(m, 0)$

当直线AB与x轴不垂直时,设直线AB的方程为y = k(x+1).

$$\begin{cases} y = k(x+1) \\ x^2 + 2y^2 - 4 = 0 \end{cases} \Rightarrow (1+2k^2)x^2 + 4k^2x + 2k^2 - 4 = 0$$

$$x_1 + x_2 = -\frac{4k^2}{1+2k^2}, \quad x_1x_2 = \frac{2k^2 - 4}{1+2k^2},$$

$$y_1y_2 = k^2(x_1+1)(x_2+1) = k^2(x_1x_2 + x_1 + x_2 + 1) = -\frac{3k^2}{1+2k^2}$$

$$\overrightarrow{MA} \cdot \overrightarrow{MB} = (x_1 - m, y_1)(x_2 - m, y_2) = x_1x_2 - m(x_1 + x_2) + m^2 + y_1y_2$$

$$= \frac{2k^2 - 4}{1+2k^2} + \frac{4mk^2}{1+2k^2} + m^2 + \frac{-3k^2}{1+2k^2} = \frac{(2m^2 + 4m - 1)k^2 + m^2 - 4}{1+2k^2}$$

$$=\frac{\frac{1}{2}(2m^2+4m-1)(2k^2+1)-\frac{1}{2}(2m^2+4m-1)+m^2-4}{1+2k^2}$$

$$=\frac{1}{2}(2m^2+4m-1)-\frac{2m+\frac{7}{2}}{1+2k^2}$$

$$\because\cdot是与k无关的常数, \therefore 2m+\frac{7}{2}=0 \\ \therefore m=-\frac{7}{4}, \ \mathbb{D}M(-\frac{7}{4},0).$$
此时, $\overrightarrow{MA}\cdot\overrightarrow{MB}=-\frac{15}{16}$. 当直线 AB 与 x 轴垂直时,则直线 AB 的方程为 $x=-1$. 此时点 AB 的坐标分别为 $(-1,\frac{\sqrt{6}}{2}),(-1,-\frac{\sqrt{6}}{2})$ 当 $m=-\frac{7}{4}$ 时,亦有 $\overrightarrow{MA}\cdot\overrightarrow{MB}=-\frac{15}{16}$ 综上,在 x 轴上存在定点 $M(-\frac{7}{4},0)$,使·为常数.

标注 【题型】平面解析几何 > 直线与圆锥曲线问题 > 定值问题(证明、探究)

【知识点】 平面解析几何 > 椭圆 > 直线和椭圆的位置关系

- $oxed{2}$ (12分)已知直线 $oldsymbol{l}\colon oldsymbol{x}=oldsymbol{t}$ 与椭圆 $oldsymbol{C}\colon rac{x^2}{4}+rac{y^2}{2}=1$ 相交于 $oldsymbol{A}$, $oldsymbol{B}$ 两点, $oldsymbol{M}$ 是椭圆 $oldsymbol{C}$ 上一点.
 - (1) (4分) 当t = 1时,求 $\triangle MAB$ 面积的最大值.
 - (2) (8分)设直线MA和MB与x轴分别相交于点E, F, O为原点.证明: $|OE| \cdot |OF|$ 为定值.

答案 (1)
$$\frac{3\sqrt{6}}{2}$$

(2) 证明见解析

解析 (1) 将
$$x = 1$$
代入 $\frac{x^2}{4} + \frac{y^2}{2} = 1$, 解得 $y = \pm \frac{\sqrt{6}}{2}$, 所以 $|AB| = \sqrt{6}$.

当M为椭圆C的顶点(-2,0)时,M到直线x=1的距离取得最大值3所以 $\triangle MAB$ 面积的最大值是 $\frac{3\sqrt{6}}{2}$.

(2) 设A,B两点坐标分别为A(t,n),B(t,-n),从而 $t^2+2n^2=4$.设 $M(x_0,y_0)$,则有 $x_0^2+2{y_0}^2=4$, $x_0\neq t$, $y_0\neq \pm n$.直线MA的方程为 $y-n=\dfrac{y_0-n}{x_0-t}(x-t)$,令y=0,得 $x=\dfrac{ty_0-nx_0}{y_0-n}$,从而 $|OE|=\left|\dfrac{ty_0-nx_0}{y_0-n}\right|$.直线MB的方程为 $y+n=\dfrac{y_0+n}{x_0-t}(x-t)$,

令
$$y=0$$
,得 $x=rac{ty_0+nx_0}{y_0+n}$,从而 $|OF|=\left|rac{ty_0+nx_0}{y_0+n}
ight|$.
所以 $|OE|\cdot|OF|=\left|rac{ty_0-nx_0}{y_0-n}
ight|\cdot\left|rac{ty_0+nx_0}{y_0+n}
ight|=\left|rac{t^2y_0^2-n^2x_0^2}{y_0^2-n^2}
ight|$

$$=\left|rac{\left(4-2n^2\right)y_0^2-n^2\left(4-2y_0^2\right)}{y_0^2-n^2}
ight|$$

$$=\left|rac{4y_0^2-4n^2}{y_0^2-n^2}
ight|=4\,.$$

所以 $|OE| \cdot |OF|$ 为定值.

标注 【知识点】平面解析几何 > 椭圆 > 直线和椭圆的位置关系

【题型】 平面解析几何 > 直线与圆锥曲线问题 > 最值问题

【题型】 平面解析几何 > 直线与圆锥曲线问题 > 定值问题(证明、探究)

- ③ (12分)已知椭圆 $C:rac{x^2}{a^2}+rac{y^2}{b^2}=1(a>b>0)$ 的离心率为 $rac{\sqrt{3}}{2}$,点(2,0)在椭圆C上.
 - (1) (4分) 求椭圆C的标准方程;
 - (2) (8分)过点P(1,0)的直线(不与坐标轴垂直)与椭圆交于A、B两点,设点B关于x轴的对称点为B'.直线AB'与x轴的交点Q是否为定点?请说明理由.

答案 (1)
$$\frac{x^2}{4} + y^2 = 1$$

(2) 直线AB'与x轴的交点Q是定点,坐标为Q(4,0),理由见解析.

解析 (1) 因为点
$$(2,0)$$
在椭圆 C 上,所以 $a=2$

又因为
$$e=rac{c}{a}=rac{\sqrt{3}}{2}$$
,所以 $c=\sqrt{3}$, $b=\sqrt{a^2-c^2}=1$.
所以椭圆 C 的标准方程为: $rac{x^2}{4}+y^2=1$.

(2) 设 $A(x_1,y_1)$, $B(x_2,y_2)$, $B'(x_2,-y_2)$, Q(n,0).

设直线
$$AB$$
: $y = k(x-1)(k \neq 0)$.

联立
$$y = k(x-1)$$
和 $x^2 + 4y^2 - 4 = 0$, 得: $(1 + 4k^2)x^2 - 8k^2x + 4k^2 - 4 = 0$.

所以
$$x_1+x_2=rac{8k^2}{1+4k^2}$$
, $x_1x_2=rac{4k^2-4}{1+4k^2}$.

直线
$$AB'$$
的方程为 $y-y_1=rac{y_1+y_2}{x_1-x_2}(x-x_1)$,

$$\Leftrightarrow$$
y=0,解得 $n=-rac{y_1(x_1-x_2)}{y_1+y_2}+x_1=rac{x_1y_2+x_2y_1}{y_1+y_2}$

$$\nabla y_1 = k(x_1-1), y_2 = k(x_2-1),$$

所以
$$n=rac{2x_1x_2-(x_1+x_2)}{x_1+x_2-2}=rac{rac{8k^2-8}{1+4k^2}-rac{8k^2}{1+4k^2}}{rac{8k^2}{1+4k^2}-2}=4\,.$$

所以直线AB'与x轴的交点Q是定点,坐标为Q(4,0).

标注 【知识点】平面解析几何 > 椭圆 > 直线和椭圆的位置关系

【题型】 平面解析几何 > 直线与圆锥曲线问题 > 定点问题

- 4 (12分)设椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ (a>b>0)的左、右焦点为 F_1,F_2 ,右顶点为A,上顶点为B.已知 $|AB|=\frac{\sqrt{3}}{2}|F_1F_2|$.
 - (1) (4分) <mark>求椭圆的</mark>离心率;
 - (2) (8分)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点 F_1 ,经过原点的直线I与该圆相切,求直线的斜率。
- 答案 (1) 椭圆的离心率 $e = \frac{\sqrt{2}}{2}$.
 - (2) 直线I的斜率为 $4 + \sqrt{15}$ 或 $4 \sqrt{15}$
- 解析 (1) 设椭圆的右焦点 F_2 的坐标为(c,0). 由 $|AB|=rac{\sqrt{3}}{2}|F_1F_2|$,可得 $a^2+b^2=3c^2$,又 $b^2=a^2-c^2$,则 $rac{c^2}{a^2}=rac{1}{2}$. $\sqrt{a^2+b^2}=\sqrt{3}c$,所以 $2a^2-c^2=3c^2$,解得 $a=\sqrt{2}c$, $e=rac{\sqrt{2}}{2}$. 所以,椭圆的离心率 $e=rac{\sqrt{2}}{2}$.
 - (2) 由(I)知 $a^2=2c^2$, $b^2=c^2$.故椭圆方程为 $\frac{x^2}{2c^2}+\frac{y^2}{c^2}=1$.设 $P(x_0,y_0)$.由 $F_1(-c,0)$,B(0,c),有 $\overline{F_1P}=(x_0+c,y_0)$, $\overline{F_1B}=(c,c)$.由已知,有 $\overline{F_1P}\cdot\overline{F_1B}=0$,即 $(x_0+c)c+y_0c=0$.又 $c\neq 0$,故有 $x_0+y_0+c=0$.①

又因为点*P*在椭圆上,故

$$\frac{{x_0}^2}{2c^2} + \frac{{y_0}^2}{c^2} = 1. \quad ②$$

由①和②可得 $3{x_0}^2+4cx_0=0$. 而点P不是椭圆的顶点,故 $x_0=-rac{4c}{3}$,代入①得 $y_0=rac{c}{3}$,即点P的坐标为 $\left(-rac{4c}{3},rac{c}{3}
ight)$.

设圆的圆心为
$$T(x_1,y_1)$$
,则 $x_1=rac{-rac{4}{3}c+0}{2}=-rac{2}{3}c$, $y_1=rac{rac{c}{3}+c}{2}=rac{2}{3}c$,进而圆的半径 $r=\sqrt{(x_1-0)^2+(y_1-c)^2}=rac{\sqrt{5}}{3}c$.

设直线l的斜率为k,依题意,直线l的方程为y = kx

由
$$l$$
与圆相切,可得 $\dfrac{|kx_1-y_1|}{\sqrt{k^2+1}}=r$,即 $\dfrac{\left|k\left(-rac{2c}{3}
ight)-rac{2c}{3}
ight|}{\sqrt{k^2+1}}=rac{\sqrt{5}}{3}c$,

整理得 $k^2 - 8k + 1 = 0$, 解得 $k = 4 \pm \sqrt{15}$.

所以,直线l的斜率为 $4+\sqrt{15}$ 或 $4-\sqrt{15}$.

标注 【题型】 平面解析几何 > 直线与圆锥曲线问题 > 向量点乘问题

【知识点】 平面解析几何 > 椭圆 > 直线和椭圆的位置关系

- (12分) 已知抛物线 $C\colon y^2=2px(p>0)$ 的焦点为F,且经过点A(1,2),过点F的直线与抛物线C交于P,Q两点.
 - (1) (4分) 求抛物线C的方程.
 - (2) (8分) O为坐标原点,直线OP,OQ与直线 $x = -\frac{p}{2}$ 分别交于S,T两点,试判断 $\overrightarrow{FS} \cdot \overrightarrow{FT}$ 是否为定值?若是,求出这个定值;若不是,请说明理由.
- 答案 (1) 抛物线C的方程为 $y^2 = 4x$.
 - (2) $\overrightarrow{FS} \cdot \overrightarrow{FT}$ 的值是定值,且定值为0.
- 解析 (1) 把点A(1,2)代入抛物线C的方程 $y^2=2px$,4=2p,解得p=2,1,所以抛物线10的方程为10。11
 - (2) 因为p=2,

 所以直线 $x=-rac{p}{2}$ 为x=-1,
 焦点F的坐标为(1,0),

设直线
$$PQ$$
的方程为 $x=ty+1$, $P(\frac{{y_1}^2}{4},y_1)$, $Q(\frac{{y_2}^2}{4},y_2)$, 则直线 OP 的方程为 $y=\frac{4}{y_1}x$, 直线 OQ 的方程为 $y=\frac{4}{y_2}x$. 由 $\begin{cases} y=\frac{4}{y_1}x \\ x=-1 \end{cases}$, 得 $S(-1,-\frac{4}{y_1})$, 同理得 $T(-1,-\frac{4}{y_2})$. 所以 $\overrightarrow{FS}=(-2,-\frac{4}{y_1})$, $\overrightarrow{FT}=(-2,-\frac{4}{y_2})$,

则
$$\overrightarrow{FS} \cdot \overrightarrow{FT} = 4 + \frac{16}{y_1 y_2}$$
. 由 $\left\{ \begin{matrix} x = ty + 1 \\ y^2 = 4x \end{matrix} \right.$,得 $y^2 - 4ty - 4 = 0$,所以 $y_1 y_2 = -4$,则 $\overrightarrow{FS} \cdot \overrightarrow{FT} = 4 + \frac{16}{(-4)} = 4 - 4 = 0$. 所以, $\overrightarrow{FS} \cdot \overrightarrow{FT}$ 的值是定值,且定值为 0 .

标注 【知识点】平面解析几何 > 抛物线 > 抛物线的定义、标准方程

- $egin{aligned} egin{aligned} egin{aligned} egin{aligned} (12分) & ext{ 已知椭圆} C: rac{x^2}{a^2} + rac{y^2}{b^2} &= 1 (a>b>0)$ 经过点 $M(1,rac{3}{2})$,其离心率为 $rac{1}{2}$.
 - (1) (4分) 求<mark>椭圆C</mark>的方程;
 - (2) (8分)设直线 $l: y = kx + m(|k| \le \frac{1}{2})$ 与椭圆C相交于A、B两点,以线段OA,OB为邻边作平行四边形OAPB,其中顶点P在椭圆C上,O为坐标原点.求|OP|的取值范围.

答案 (1)
$$\frac{x^2}{4} + \frac{y^2}{3} = 1$$
.

(2)
$$[\sqrt{3}, \frac{\sqrt{13}}{2}].$$

(1) 由已知可得
$$e^2=rac{a^2-b^2}{a^2}=rac{1}{4}$$
,所以 $3a^2=4b^2$ ① 又点 $M(1,rac{3}{2})$ 在椭圆 C 上,所以 $rac{1}{a^2}+rac{9}{4b^2}=1$ ② 由①②解之,得 $a^2=4,b^2=3$.

故椭圆
$$C$$
的方程为 $\frac{x^2}{4}+\frac{y^2}{3}=1.$

(2) 当
$$k=0$$
时, $P(0,2m)$ 在椭圆 C 上,解得 $m=\pm \frac{\sqrt{3}}{2}$,所以 $|OP|=\sqrt{3}$.
当 $k\neq 0$ 时,则由 $\left\{ egin{array}{ll} y=kx+m, \\ rac{x^2}{4}+rac{y^2}{3}=1. \end{array}
ight.$

消**y**化简整理得:
$$(3+4k^2)x^2+8kmx+4m^2-12=0$$

$$\Delta = 64k^2m^2 - 4(3+4k^2)(4m^2-12) = 48(3+4k^2-m^2) > 0$$

设A,B,P点的坐标分别为 $(x_1,y_1),(x_2,y_2),(x_0,y_0)$,则

$$x_0 = x_1 + x_2 = -rac{8km}{3+4k^2}, y_0 = y_1 + y_2 = k(x_1 + x_2) + 2m = rac{6m}{3+4k^2}\,.$$

由于点P在椭圆C上,所以 $\frac{x_0^2}{4}+\frac{y_0^2}{3}=1.$

从而
$$\frac{16k^2m^2}{\left(3+4k^2\right)^2}+rac{12m^2}{\left(3+4k^2\right)^2}=1$$
,化简得 $4m^2=3+4k^2$,经检验满足③式.

$$\begin{split} & \left| \nabla |OP| = \sqrt{x_0^2 + y_0^2} = \sqrt{\frac{64k^2m^2}{\left(3 + 4k^2\right)^2} + \frac{36m^2}{\left(3 + 4k^2\right)^2}} \\ & = \sqrt{\frac{4m^2(16k^2 + 9)}{\left(3 + 4k^2\right)^2}} = \sqrt{\frac{16k^2 + 9}{4k^2 + 3}} \\ & = \sqrt{4 - \frac{3}{4k^2 + 3}}. \\ & = \sqrt{4 - \frac{3}{4k^2 + 3}}. \\ & = \Delta |A| \leq \frac{1}{2}, \;\; |A| \leq 4k^2 + 3 \leq 4, \;\; |A| \leq \frac{3}{4k^2 + 3} < 1, \\ & \Delta |A| \leq |OP| \leq \frac{\sqrt{13}}{2}. \\ & \leq |A| \leq |A|$$

标注 【知识点】 平面解析几何 > 椭圆 > 椭圆的定义、标准方程

添加高考君为好友, 获取更多高中福利资料。

关注四川高考一站通,及时获得高考咨询。