

绝密★启用前

2019年普通高等学校招生全国统一考试(天津卷)

数 学(文史类)

本试卷分为第 I 卷 (选择题)和第 II 卷 (非选择题)两部分,共 150 分,考试用时 120 分钟。第 I 卷 1 至 2 页,第 II 卷 3 至 5 页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。答卷时, 考生务必将答案涂写在答题卡上,答在试卷上的无效。考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利

第 | 卷

注意事项:

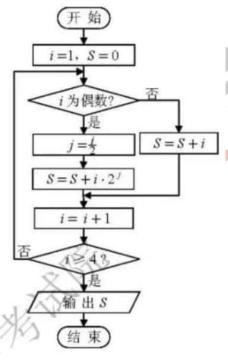
- 1. 每小题选出答案后,用<mark>铅笔</mark>将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂 其他答案标号。
- 2. 本卷共 8 小题,每小题 5 分共 40 分。

参考公式:

- 如果事件 A, B 互斥, 那么 $P(A \cup B) = P(A) + P(B)$.
- 圆柱的体积公式V = Sh, 其中S表示圆柱的底面面积, h表示圆柱的高
- 棱锥的体积公式 $V = \frac{1}{3}Sh$, 其中S表示棱锥的底面面积, h表示棱锥的高
- 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
- (1) 设集合 $A = \{-1,1,2,3,5\}$, $B = \{2,3,4\}$, $C = \{x \in R \mid 1, x < 3\}$, 则 $(A \cap C) \cup B = \{x \in R \mid 1, x < 3\}$,
- $(A) \{2\}$
- (B) $\{2, 3\}$
- (C) $\{-1, 2, 3\}$
- (D) $\{1, 2, 3, 4\}$
- (2) 设变量 x, y 满足约束条件 $\begin{cases} x+y-2 \leq 0, \\ x-y+2 \geq 0, \\ y...-1, \\ y...-1, \end{cases}$ 则目标函数 z=-4x+y 的最大值为
- (A) 2
- (B) 3
- (C) 5
- (D) 6
- (3) 设 $x \in R$,则"0 < x < 5"是"|x-1| < 1"的

深圳小学家长群:254317299 深圳初中家长群:90482695 深圳高中家长群:175743089

- (A) 充分而不必要条件
- (B) 必要而不充分条件
- (C) 充要条件
- (D) 既不充分也不必要条件
- (4) 阅读右边的程序框图,运行相应的程序,输出S的值为



- (A) 5
- (B) 8
- (C) 24 (D) 29
- (5) 已知 $a = \log_2 7$, $b = \log_3 8$, $c = 0.3^{0.2}$, 则 a,b,c 的大小关系为
- (A) c < b < a

(B) a < b < c

(c) b < c < a

- (D) c < a < b
- (6) 已知抛物线 $y^2 = 4x$ 的焦点为 F , 准线为 l . 若与双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的两条渐近线分别

交于点 A和点 B,且 |AB|=4|OF|(O为原点),则双曲线的离心率为

- (A) $\sqrt{2}$
- (B) $\sqrt{3}$ (C) 2
- (D) $\sqrt{5}$
- (7) 已知函数 $f(x) = A\sin(\omega x + \varphi)(A > 0, \omega > 0, |\varphi| < \pi)$ 是奇函数,且 f(x) 的最小正周期为 π ,将

深圳小学家长群:254317299

深圳初中家长群:90482695

深圳高中家长群:175743089

更多资料详见: http://sz.jiajiaoban.com/

咨询电话:4000-121-121

y = f(x)的图象上所有点的横坐标伸长到原来的 2 倍(纵坐标不变),所得图象对应的函数为 g(x). 若

$$g\left(\frac{\pi}{4}\right) = \sqrt{2}$$
, $\emptyset f\left(\frac{3\pi}{8}\right) =$

- (A) -2 (B) $-\sqrt{2}$
- (D) 2

(8) 已知函数 $f(x) = \begin{cases} 2\sqrt{x}, & 0, x, 1, \\ \frac{1}{x}, & x > 1. \end{cases}$ 若关于 x 的方程 $f(x) = -\frac{1}{4}x + a \quad (a \in R)$ 恰有两个互异的实数解,

则a的取值范围为

- (A) $\left[\frac{5}{4}, \frac{9}{4}\right]$ (B) $\left(\frac{5}{4}, \frac{9}{4}\right]$
- (C) $\left(\frac{5}{4}, \frac{9}{4}\right] \cup \{1\}$
- (D) $\left\lceil \frac{5}{4}, \frac{9}{4} \right\rceil \cup \{1\}$

绝密★启用前

2019年普通高等学校招生全国统一考试(天津卷)

学(文史类) 数

第II卷

注意事项:

- 1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上。
- 2. 本卷共 12 小题, 共 110 分。
- 二、填空题:本大题共6小题,每小题5分,共30分。
- (9) i 是虚数单位,则的值 $\left| \frac{5-i}{1+i} \right|$ 的值为_
- (10) 设 $x \in R$, 使不等式 $3x^2 + x 2 < 0$ 成立的x的取值范围为
- (11) 曲线 $y = \cos x \frac{x}{2}$ 在点 (0,1) 处的切线方程为____
- (12) 已知四棱锥的底面是边长为 $\sqrt{2}$ 的正方形,侧棱长均为 $\sqrt{5}$. 若圆柱的一个底面的圆周经过四棱锥四 条侧棱的中点,另一个底<mark>面的</mark>圆心为四棱锥底面的中心,则该圆柱的体积为___

深圳小学家长群:254317299 深圳初中家长群:90482695 深圳高中家长群:175743089

(13) 设
$$x > 0$$
, $y > 0$, $x + 2y = 4$, 则 $\frac{(x+1)(2y+1)}{xy}$ 的最小值为_____

(14) 在四边形 ABCD 中, AD // BC , $AB=2\sqrt{3}$, AD=5 , $\angle A=30^\circ$, 点 E 在线段 CB 的延长线上,且 AE=BE ,则 $\overrightarrow{BD}\cdot\overrightarrow{AE}=$ ______.

三. 解答题: 本大题共6小题, 共80分. 解答应写出文字说明, 证明过程或演算步骤.

(15)(本小题满分13分)

2019 年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.

- (I)应从老、中、青员工中分别抽取多少人?
- (II) 抽取的 25 人中,享受至少两项专项附加扣除的员工有 6 人,分别记为 A,B,C,D,E,F . 享受情况如 右表,其中"〇"表示享受,"×"表示不享受. 现从这 6 人中随机抽取 2 人接受采访.

	A	В	С	D	Е	F
子女教育	0	0	×	0	×	0
继续教育	×	×	0	×	0	0
大病医疗	×	×	×	0	×	×
住房贷款利息	0	0	×	×	0	0
住房租金	×	×	0	×	×	×
赡养老人	0	0	×	×		0

- (i) 试用所给字母列举出所有可能的抽取结果;
- (ii) 设M 为事件"抽取的2人享受的专项附加扣除至少有一项相同",求事件M 发生的概率.
- (16)(本小题满分13分)

在 $\triangle ABC$ 中,内角 A, B , C 所对的边分别为 a , b , c . 已知 b+c=2a , $3c\sin B=4a\sin C$.

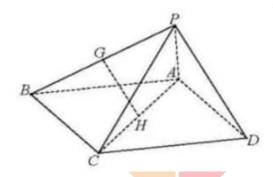
(I) 求 cosB 的值;

深圳小学家长群:254317299 深圳初中家长群:90482695 深圳高中家长群:175743089

(II) 求
$$\sin\left(2B + \frac{\pi}{6}\right)$$
 的值.

(17) (本小题满分13分)

如图, 在四棱锥 P-ABCD 中, 底面 ABCD 为平行四边形, $\triangle PCD$ 为等边三角形, 平面 PAC 上平面 PCD , $PA \perp CD$, CD=2 , AD=3 ,



(I)设G,H分别为PB,AC的中点,求证:GH // 平面PAD;

(II) 求证: *PA* 上平面 *PCD*;

(III) 求直线 AD 与平面 PAC 所成角的正弦值.

(18) (本小题满分13分)

设 $\{a_{_{\mathrm{n}}}\}$ 是等差数列, $\{b_{_{n}}\}$ 是等比数列,公比大于0,已知 $a_{_{1}}=b_{_{1}}=3$, $b_{_{2}}=a_{_{3}}$, $b_{_{3}}=4a_{_{2}}+3$.

(I) 求 $\{a_n\}$ 和 $\{b_n\}$ 的通项公式;

(II) 设数列
$$\{c_n\}$$
满足 $c_n = \begin{cases} 1, & n$ 为奇数,
$$b_{\frac{n}{2}} & n$$
为偶数, 求 $a_1c_1 + a_2c_2 + \dots + a_{2n}c_{2n} & (n \in N^*). \end{cases}$

(19) (本小题满分14分)

设椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的左焦点为 F ,左顶点为 A ,顶点为 B 已知 $\sqrt{3} \mid OA \mid = 2 \mid OB \mid$ (O为原点).

(I) 求椭圆的离心率;

(II)设经过点 F 且斜率为 $\frac{3}{4}$ 的直线 l 与椭圆在 x 轴上方的交点为 P,圆 C 同时与 x 轴和直线 l 相切,圆心 C 在直线 x = 4 上,且 OC // AP,求椭圆的方程.

(20) (本小题满分14分

深圳小学家长群:254317299 深圳初中家长群:90482695 深圳高中家长群:175743089

设函数 $f(x) = \ln x - a(x-1)e^x$, 其中 $a \in R$.

- (I) 若 $a \leq 0$, 讨论f(x)的单调性;
- (II) 若 $0 < a < \frac{1}{e}$,
- (i) 证明 f(x)恰有两个零点
- (ii) 设x为f(x)的极值点, x_1 为f(x)的零点,且 $x_1 > x_0$,证明 $3x_0 x_1 > 2$.

深圳小学家长群:254317299 深圳初中家长群:90482695 深圳高中家长群:175743089

绝密★启用前

2019年普通高等学校招生全国统一考试(天津卷)

数 学(文史类)参考解答

	사사 구스 디모	本题考查基本知识和基本运算.每小题5分,	N# /\ 40 /\
_	7元 4全 是		/

- (1) D
- (2) C
- (3) B
- (4) B

- (5) A
- (6) D
- (7) C
- (8)

二. 填空题: 本题考查基本知识和基本运算. 每小题 5 分,满分 30 分

(9) $\sqrt{3}$

 $(10) \left(-1, \frac{2}{3}\right)$

 $(11) \ \ x + 2y - 2 = 0$

(12) $\frac{\pi}{4}$

 $(13) \frac{9}{2}$

(14) -1

三. 解答题

(15)本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力,满分13分.

解:(1)由己知,老、中、青员工人数之比为6:9:10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员中分别抽取6人,9人,10人.

(II)(i)从已知的6人中随机抽取2人的所有可能结果为

 ${A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{D,F},{E,$

(ii) 由表格知,符合题意的所有可能结果为

 $\{A,B\}, \{A,D\}, \{A,E\}, \{A,F\}, \{B,D\}, \{B,E\}, \{B,F\}, \{C,E\}, \{C,F\}, \{D,F\}, \{E,F\}, \ \sharp \ 11 \ 11 \ \sharp \ 11 \ 11 \ \sharp \ \ 11 \ \sharp \ \ 11 \ \sharp \ \ 11 \ \sharp \ \ 11 \ \sharp \ \ 11 \ 11 \ \sharp \ \ 11 \ \sharp \ \ 11 \ \sharp \ \ 11 \ \ 11 \ \ 11 \ \ 11 \ \ 11$

所以,事件 M 发生的概率 $P(M) = \frac{11}{15}$

(16)本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识. 考查运算求解能力. 满分 13 分.

(1) 解: 在 $\triangle ABC$ 中,由正弦定理 $\frac{b}{\sin B} = \frac{c}{\sin C}$,得 $b\sin C = c\sin B$,又由 $3c\sin B = 4a\sin C$,得

深圳小学家长群:254317299

深圳初中家长群:90482695

深圳高中家长群:175743089

咨询电话:4000-121-121

更多资料详见: http://sz.jiajiaoban.com/

 $3b\sin C = 4a\sin C$,即 3b = 4a.又因为b+c=2a,得到 $b=\frac{4}{3}a$, $c=\frac{2}{3}a$.由余弦定理可得

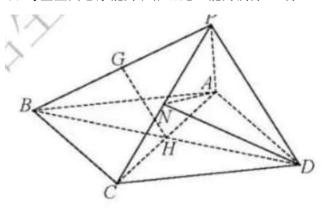
$$\cos B = \frac{a^2 + c^2 - b^2}{2ac} = \frac{a^2 + \frac{4}{9}a^2 - \frac{16}{9}a^2}{2 \cdot a \cdot \frac{2}{3}a} = -\frac{1}{4}.$$

(II)解:由(1)可得
$$\sin B = \sqrt{1-\cos^2 B} = \frac{\sqrt{15}}{4}$$

, 从 面
$$\sin 2B = 2\sin B\cos B = -\frac{\sqrt{15}}{8}$$
 , $\cos 2B = \cos^2 B - \sin^2 B = -\frac{7}{8}$, 故

$$\sin\left(2B + \frac{\pi}{6}\right) = \sin 2B \cos \frac{\pi}{6} + \cos 2B \sin \frac{\pi}{6} = -\frac{\sqrt{15}}{8} \times \frac{\sqrt{3}}{2} - \frac{7}{8} \times \frac{1}{2} = \frac{3\sqrt{5} + 7}{16}.$$

(17) 本小题主要考查直线与平面平行直线与平面垂直、平面与平面垂直、直线与平面所成的角等基础知识. 考查空间想象能力和推理论证能力满分 13 分.



(Ⅰ)证明: 连接 BD,易知 $AC \cap BD = H$, BH = DH . 又由 BG = PG ,故 $GH /\!\!/ PD$,又因为 $GH \not \subset$ 平面 PAD , $PD \subset$ 平面 PAD , 所以 $GH /\!\!/$ 平面 PAD .

(II)证明:取棱 PC 的中点 N,连接 DN. 依题意,得 $DN \perp PC$,又因为平面 $PAC \perp$ 平面 PCD,平面 $PAC \cap$ 平面 PCD = PC,所以 $DN \perp$ 平面 PAC,交 $PA \subset$ 平面 PAC,故 $DN \perp PA$. 又已知 $PA \perp CD$, $CD \cap DN = D$, 所以 $PA \perp$ 平面 PCD.

(III)解:连接 AN,由(II)中 DN 上 平面 PAC ,可知 $\angle DAN$ 为直线 AD 与 平面 PAC 所成的角,因为 $\triangle PCD$ 为等边三角形,CD=2 且 N 为 PC 的中点,所以 $DN=\sqrt{3}$. 又 DN \bot AN ,

深圳小学家长群:254317299 深圳初中家长群:90482695 深圳高中家长群:175743089

在
$$Rt \triangle AND$$
 中, $\sin \angle DAN = \frac{DN}{AD} = \frac{\sqrt{3}}{3}$.

所以,直线 AD 与平面 PAC 所成角的正弦值为 $\frac{\sqrt{3}}{3}$.

(18)本小题主要考查等差数列、等比数列的通项公式及其前n项和公式等基础知识,考查数列求和的基本方法和运算求解能力. 满分 13 分.

(I)解: 设等差数列
$$\left\{a_{n}\right\}$$
 的公差为 d ,等比数列 $\left\{b_{n}\right\}$ 的公比为 q 依题意,得 $\left\{3q=3+2d\atop 3q^{2}=15+4d\right\}$,解得 $\left\{d=3\atop q=3\right\}$,

故
$$a_n = 3 + 3(n-1) = 3n$$
 , $b_n = 3 \times 3^{n-1} = 3^n$

所以, $\{a_n\}$ 的通项公式为 $a_n=3n$, $\{b_n\}$ 的通项公式 为 $b_n=3^n$.

(II)
$$mathref{H}: a_1c_1 + a_2c_2 + \dots + a_{2n}c_{2n}$$

$$= (a_1 + a_3 + a_5 + \dots + a_{2n-1}) + (a_2b_1 + a_4b_2 + a_6b_3 + \dots + a_{2n}b_n)$$

$$= \left[n \times 3 + \frac{n(n-1)}{2} \times 6 \right] + \left(6 \times 3^1 + 12 \times 3^2 + 18 \times 3^3 + \dots + 6n \times 3^n \right)$$

$$= 3n^2 + 6 \left(1 \times 3^1 + 2 \times 3^2 + \dots + n \times 3^n \right)$$

$$T_n = 1 \times 3^1 + 2 \times 3^2 + \dots + n \times 3^n. \quad \text{(1)}$$

$$3T_n = 1 \times 3^2 + 2 \times 3^3 + \dots + n \times 3^{3+1}, \quad \text{(2)}$$

②-①得,
$$2T_n = -3 - 3^2 - 3^3 - \dots - 3^n + n \times 3^{n+1} = -\frac{3(1-3^n)}{1-3} + n \times 3^{n+1} = \frac{(2n-1)3^{n+1} + 3}{2}$$
.

所以,
$$a_1c_1 + a_2c_2 + ... + a_{20}c_{2n} = 3n^2 + 6T_n = 3n^2 + 3 \times \frac{(2n-1)3^{n+1} + 3}{2}$$

$$=\frac{(2n-1)3^{n+2}+6n^2+9}{2}\left(n\in N^*\right).$$

(19)本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识. 考查用代数方法研究圆锥曲线的性质. 考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力,满分 14 分.

深圳小学家长群:254317299 深圳初中家长群:90482695 深圳高中家长群:175743089

(I)解:设椭圆的半焦距为c,由已知有 $\sqrt{3}a = 2b$,又由 $a^2 = b^2 + c^2$,消去b 得 $a^2 = \left(\frac{\sqrt{3}}{2}a\right)^2 + c^2$,

解得
$$\frac{c}{a} = \frac{1}{2}$$
.

所以,椭圆的离心率为 $\frac{1}{2}$.

(II)解:由(I)知,a=2c, $b=\sqrt{3}c$,故椭圆方程为 $\frac{x^2}{4c^2}+\frac{y^2}{3c^2}=1$.由题意, $F\left(-c,0\right)$,则直线l

的方程为 $y = \frac{3}{4}(x+c)$. 点 P 的坐标满足 $\begin{cases} \frac{x^2}{4c^2} + \frac{y^2}{3c^2} = 1, \\ y = \frac{3}{4}(x+c), \end{cases}$,消去 y 并化简,得到 $7x^2 + 6cx - 13c^2 = 0$,

解得 $x_1 = c$, $x_2 = -\frac{13c}{7}$, 代入到 l 的方程, 解得 $y_1 = \frac{3}{2}c$, $y_2 = -\frac{9}{14}c$. 因为点 $P \in x$ 轴上方, 所以 $P\left(c, \frac{3}{2}c\right)$.

由圆心 C 在直线 x = 4 上,可设 C(4,t) . 因为 OC //AP ,且由(I)知 A(-2c,0) ,故 $\frac{t}{4} = \frac{\frac{3}{2}c}{c+2c}$,解得

t=2. 因为圆C与x轴相切,所以圆的半径为 2,又由圆C与l相切,得 $\dfrac{\left|\dfrac{3}{4}(4+c)-2\right|}{\sqrt{1+\left(\dfrac{3}{4}\right)^2}}=2$,可得c=2.

所以,椭圆的方程为 $\frac{x^2}{16} + \frac{y^2}{12} = 1$.

- (20)本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法,考查函数思想、化归与转化思想.考查综合分析问题和解决问题的能力.满分 14 分.
- (I)解:由己知,f(x)的定义域为 $(0,+\infty)$,且

$$f'(x) = \frac{1}{x} - \left[ae^x + a(x-1)e^x\right] = \frac{1 - ax^2e^x}{x}$$

因此当 $a \le 0$ 时, $1-ax^2e^x > 0$,从而f'(x) > 0,所以f(x)在 $(0,+\infty)$ 内单调递增.

深圳小学家长群:254317299 深圳初中家长群:90482695 深圳高中家长群:175743089

(II) 证明: (i) 由(I)知
$$f'(x) = \frac{1 - ax^2 e^x}{x}$$
. 令 $g(x) = 1 - ax^2 e^x$,由 $0 < a < \frac{1}{e}$,

可知 g(x) 在 $(0,+\infty)$ 内单调递减,又 g(1)=1-ae>0,且

$$g\left(\ln\frac{1}{a}\right) = 1 - a\left(\ln\frac{1}{a}\right)^2 \frac{1}{a} = 1 - \left(\ln\frac{1}{a}\right)^2 < 0$$
.

故 g(x) = 0 在 $(0, +\infty)$ 内有唯一解,从而 f'(x) = 0 在 $(0, +\infty)$ 内有唯一解,不妨设为 x_0 ,则 $1 < x_0 < \ln \frac{1}{a}$.

当 $x \in (0, x_0)$ 时, $f'(x) = \frac{g(x)}{x} > \frac{g(x_0)}{x} = 0$, 所以 f(x) 在 $(0, x_0)$ 内单调递增; 当 $x \in (x_0, +\infty)$ 时,

 $f'(x) = \frac{g(x)}{x} < \frac{g(x_0)}{x} = 0$,所以f(x)在 $(x_0, +\infty)$ 内单调递减,因此 x_0 是f(x)的唯一极值点.

令 $h(x) = \ln x - x + 1$,则当 x > 1 时, $h'(x) = \frac{1}{x} - 1 < 0$,故 h(x) 在 $(1, +\infty)$ 内单调递减,从而当 x > 1 时, h(x) < h(1) = 0 , 所以 $\ln x < x - 1$. 从而

$$f\left(\ln\frac{1}{a}\right) = \ln\ln\frac{1}{a} - a\left(\ln\frac{1}{a} - 1\right)e^{\ln\frac{1}{a}} = \ln\ln\frac{1}{a} - \ln\frac{1}{a} + 1 = h\left(\ln\frac{1}{a}\right) < 0,$$

又因为 $f(x_0) > f(1) = 0$, 所以 f(x) 在 $(1,+\infty)$ 内有唯零点. 又 f(x) 在 $(0,x_0)$ 内有唯一零点 1, 从而, f(x)) 在 $(1,+\infty)$ 内恰有两个零点.

(ii) 由题意,
$$\begin{cases} f'(x_0) = 0, \\ f(x_1) = 0, \end{cases} \mathbb{P} \begin{cases} ax_0^2 e^x = 1 \\ \ln x_1 = a(x_1 - 1)e^{x_1} \end{cases}$$
,从而 $\ln x_1 = \frac{x_1 - 1}{x_0^2} e^{x_1 - x_0}$,即 $e^{x_1 - x_0} = \frac{x_0^2 \ln x_1}{x_1 - 1}$. 因为

当x > 1时, $\ln x < x - 1$, 又 $x_1 > x_0 > 1$,故 $e^{x_1 - x_0} < \frac{x_0^2(x_1 - 1)}{x_1 - 1} = x_0^2$, 两边取对数,得 $\ln e^{x_1 - x_0} < \ln x_0^2$,

于是

$$x_1 - x_0 < 2 \ln x_0 < 2 \left(x_0 - 1 \right),$$

整理得 $3x_0 - x_1 > 2$.

深圳小学家长群:254317299 深圳初中家长群:90482695 深圳高中家长群:175743089