南京市、盐城市 2019 届高三年级第二次模拟考试 数学

2019.03

- 一、填空题: 本大题共 14 小题,每小题 5 分,计 70 分,不需写出解答过程,请把答案写在答题卡的指定位置上。
- 1. 已知集合 $A = \{x \mid 1 < x < 3\}, B = \{x \mid 2 < x < 4\}$,则 A Y B = ______.

【答案】 $\{x | 1 < x < 4\}$

【解析】画数轴可得。

【点评】考察集合并集,属于简单题。

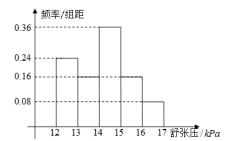
2. 若复数 z 满足 $\frac{z}{a+2i}=i$ (i 为虚数单位),且实部和虚部相等,则实数 a 的值为 ______.

【答案】-2

【解析】 z = i(a+2i) = ai - 2, a = -2

【点评】复数,简单题

- 3. 某药厂选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位: kPa)的分组区间为[12,13),[13,14),[14,15),[15,16],[16,17],将其按从左到右的顺序分别编号为第一组,第二组,
- $_{\Lambda\Lambda}$,第五组,右图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有 20人,则第三组中人数为 ______.



【答案】18

【解析】1×(0.24+0.16)=0.4, 总人数: 20÷0.4=50(人), 第三组: 50×0.36=18

【点评】考察频率分布直方图,属于简单题。

4. 右图是某算法的伪代码,输出的结果S的值为 ______.

$$i \leftarrow 1$$

 $S \leftarrow 1$

While i < 6

$$i \leftarrow i + 2$$

$$S \leftarrow i + S$$

End While

Print S

【答案】16

i = 1, s = 1

【解析】 i = 3, s = 4i = 5, s = 9i = 7, s = 16

【点评】考察算法流程图,属于简单题。

5. 现有 5 件相同的产品,其中 3 件合格, 2 件不合格,从中随机抽检 2 件,则一件合格,另一件不合格的概率为

【答案】 $\frac{3}{5}$

【解析】
$$P = \frac{C_3^1 C_2^1}{C_5^2} = \frac{3 \times 2}{10} = \frac{3}{5}$$

【点评】考察排列组合与概率,属于简单题。

6. 等差数列 $\{a_n\}$ 中, $a_4=10$,前 12 项的和 $S_{12}=90$,则 a_{18} 的值为 ________

【答案】-4

【解析】
$$S_{12} = (a_4 + a_9) \times 6 \Rightarrow a_9 = 5 \Rightarrow d = -1 \Rightarrow a_{18} = -4$$

【点评】考察等差数列,属于简单题。

7. 在平面直角坐标系 xOy 中,已知点 A 是抛物线 $y^2 = 4x$ 与双曲线 $\frac{x^2}{4} - \frac{y^2}{b^2} = 1(b > 0)$ 的一个交点,若抛物线的焦点为 F ,且 FA = 5 ,则双曲线的渐近线方程为 _______.

【答案】
$$y = \pm \frac{2\sqrt{3}}{3}x$$

【解析】做 A 到准线的垂线段 AH , 易得 AH = AF = 5 , 可求得 A 点坐标 (4,4) 或 (4,-4) ,

将坐标代入双曲线方程可求得b²及渐近线方程。

【点评】考察抛物线性质与双曲线的渐近线,属于简单题

8. 若函数 $f(x) = 2\sin(\omega x + \varphi)(\omega > 0, 0 < \varphi < \pi)$ 的图像经过点 $\left(\frac{\pi}{6}, 2\right)$,且相邻两条对称轴的距离为 $\frac{\pi}{2}$,则 $f\left(\frac{\pi}{4}\right)$ 的值为 ______.

【答案】√3

【解析】由
$$\frac{T}{2} = \frac{\pi}{2}$$
,求得 $\omega = 2$,再代入点 $\left(\frac{\pi}{6}, 2\right)$ 的坐标,求得 $\varphi = \frac{\pi}{6}$,得解。

【点评】考察三角函数平移变换,属于基础题型。

9. 已知正四棱锥 P-ABCD的所有棱长都相等, 高为 $\sqrt{2}$, 则该正四棱锥的表面积为 ______

【答案】4√3+4

【解析】设棱长为l,高为h,正四棱锥中, $\frac{l}{h} = \sqrt{2}$,所以l = 2,

$$\iiint S = 4 \cdot \frac{1}{2} \cdot 2^2 \cdot \sin \frac{\pi}{3} + 4 = 4\sqrt{3} + 4$$

【点评】考察正四棱锥棱长与高的关系,及表面积公式,属于基础题

10. 已知函数 f(x) 是定义在 R 上的奇函数,且当 $x \ge 0$ 时, $f(x) = x^2 - 5x$,则不等式 f(x-1) > f(x)的解集为 ______

【答案】(-2,3)

【解析】由题意,得 f(x) 在 $(-\frac{5}{2},\frac{5}{2})$ 上单调减,在 (-5,0) 上关于 $x=-\frac{5}{2}$ 对称,在 (0,5) 上关于 $x=\frac{5}{2}$ 对称,所以 -3< x-1< 2,则 -2< x< 3

【点评】考察函数的奇偶性,单调性,需要结合图像进行求解

11.在平面直角坐标系 xOy 中,已知点 A(-1,0) , B(5,0) .若圆 $M:(x-4)^2+(y-m)^2=4$ 上存在唯一点 P ,使得直线 PA , PB 在 y 轴上的截距之积为 5,则实数 m 的值为 ______.

【答案】 $\pm\sqrt{21}$ 或 $\pm\sqrt{3}$

【解析】设点 $P(x_0, y_0)$,则 $PA: y = \frac{y_0}{x_0 + 1}(x + 1)$,在 y 轴截距为 $\frac{y_0}{x_0 + 1}$,同理得 PB 在 y 轴截距为 $-\frac{5y_0}{x_0 - 5}$,由截距之积为 5,得 $(x_0 - 2)^2 + y_0^2 = 9$,由题意 P 的轨迹应与圆 M 恰有一个交

点,若 A、B 不在圆 M 上,所以圆心距等于半径之和或差, $\sqrt{2^2+m^2}=5$,解得 $m=\pm\sqrt{21}$;

或 $\sqrt{2^2+m^2}=1$, 无解; 若若 A、B 在圆 M 上, 解得 $m=\pm\sqrt{3}$, 经检验成立。

【点评】考察隐形圆,圆与圆之间的位置关系,难度中等

12.已知 AD 是直角三角形 ABC 的斜边 BC 上的高,点 P 在 DA 的延长线上,且满足 $(PB+PC) \bullet AD = 4\sqrt{2}$.若 $AD = \sqrt{2}$,则 $PB \bullet PC$ 的值为______.

【答案】2

【解析】取BC 中点为E,PB+PC=2PE,所以 $PE\cdot AD=PD\cdot AD=2\sqrt{2}$,所以|PD|=2,

【点评】考察向量的平行四边形法则,数量积的投影法,直角三角形斜边上的高与斜边两部 分乘积的关系

13.已知函数
$$f(x) = \begin{cases} |x+3|, x \le 0 \\ x^3 - 12x + 3, x > 0 \end{cases}$$
.设 $g(x) = kx + 1$,且函数 $y = f(x) - g(x)$ 的图像经过四

个象限,则实数k的取值范围为 \triangle .

【答案】
$$k \in \left(-9, \frac{1}{3}\right)$$

【考点】函数的图像,数形结合思想,切线问题。

【解析】可根据函数解析式画出函数图像, $f(x)=x^3-12x+3$, x>0, $f'(x)=3x^2-12$, 可知 f(x)在区间(0,2)单调递减, $(2,+\infty)$ 单调递增,且 f(2)<0, g(x)=kx+1恒过(0,1),若要使 y=f(x)-g(x)经过四个象限,由图可知只需 f(x)与 g(x)在 $(-\infty,0)$ 和 $(0,+\infty)$ 分别有交点即可;

k > 0时,在 $(-\infty,0)$ 区间内,需满足 $k \in (0,\frac{1}{3})$;

k < 0 时,在 $(0, +\infty)$ 内,只需求过定点 (0,1) 在函数图像的切线即可,经计算可知此时 $k \in (-9,0)$;

k=0符合题意;

综上可知,
$$k \in \left(-9, \frac{1}{3}\right)$$

【答案】
$$\frac{\sqrt{2}+1}{2}$$

【解析】

$$\sin C = 2\cos A\cos B$$
, $\sin(A+B) = 2\cos A\cos B$
 $\sin A\cos B + \cos A\sin B = 2\cos A\cos B$
 $\tan A + \tan B = 2$

$$\cos^{2} A + \cos^{2} B = \frac{\cos^{2} A}{\sin^{2} A + \cos^{2} A} + \frac{\cos^{2} B}{\sin^{2} B + \cos^{2} B} = \frac{1}{\tan^{2} A + 1} + \frac{1}{\tan^{2} B + 1}$$

$$= \frac{\tan^{2} A + \tan^{2} B + 2}{(\tan A \tan B)^{2} + \tan^{2} A + \tan^{2} B + 1} = \frac{(\tan A + \tan B)^{2} - 2\tan A \tan B + 2}{(\tan A \tan B)^{2} + (\tan A + \tan B)^{2} - 2\tan A \tan B + 1}$$

$$= \frac{6 - 2\tan A \tan B}{(\tan A \tan B)^{2} - 2\tan A \tan B + 5}$$

分母 $(\tan A \tan B)^2 - 2 \tan A \tan B + 5 > 0$ 令 $6 - 2 \tan A \tan B = t(t > 0)$

【点评】本题属于综合题,涉及知识点较多,包括三角恒等式,同角三角函数关系,基本不等式,常见的1的转化,配方法和换元法等,较难。

- 二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卡的指定区域内.
- 15. (本小题满分 14 分)

设向量 $a = (\cos \alpha, \lambda \sin \alpha)$, $b = (\cos \beta, \sin \beta)$,其中 $\lambda > 0$, $0 < \alpha < \beta < \frac{\pi}{2}$,且a + b与a - b互相垂直.

- (1) 求实数 λ 的值;
- (2) 若 $a \cdot b = \frac{4}{5}$, 且 $\tan \beta = 2$, 求 $\tan \alpha$ 的值.

【解析】解: (1)

$$\therefore \lambda = \pm 1,$$

$$Q \lambda > 0, \therefore \lambda = 1$$

$$(2)\lambda = 1$$
时, $a = (\cos \alpha, \sin \alpha)$, $b = (\cos \beta, \sin \beta)$,
r r $agb = \cos \alpha \cos \beta + \sin \alpha \sin \beta = \cos(\alpha - \beta) = \frac{4}{5}$

$$Q 0 < \alpha < \beta < \frac{\pi}{2}$$

$$\therefore -\frac{\pi}{2} < \alpha - \beta < 0$$

$$\therefore \sin(\alpha - \beta) = -\sqrt{1 - \cos^2(\alpha - \beta)} = -\sqrt{1 - (\frac{4}{5})^2} = -\frac{3}{5}$$

$$\therefore \tan(\alpha - \beta) = \frac{\sin(\alpha - \beta)}{\cos(\alpha - \beta)} = -\frac{3}{4}$$

$$\therefore \tan \alpha = \tan (\alpha - \beta + \beta) = \frac{\tan (\alpha - \beta) + \tan \beta}{1 - \tan (\alpha - \beta) \tan \beta} = \frac{-\frac{3}{4} + 2}{1 - (-\frac{3}{4}) + 2} = \frac{1}{2}$$

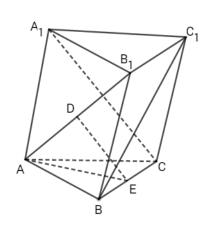
【点评】(1)考察向量垂直的坐标运算, (2)考察向量数量积的坐标公式、三角恒等变换、同角三角函数关系。属于简单题。

16. (本小题满分 14 分)

如图,在三棱柱中 $ABC - A_1B_1C_1$,AB = AC, $A_1C \perp BC_1$, $AB_1 \perp BC_1$,D,E 分别是 AB_1 和BC 的中点.

求证: (1) DE // 平面 ACC₁A₁;

(2) $AE \perp$ 平面 BCC_1B_1 .



【解析】证明: (1) 连接 A_iB_i

由于三棱柱 $ABC - A_iB_iC_i$ 中,侧面 ABB_iA_i 为平行四边形,

 $\therefore A_1B$ 与 AB_1 互相平分

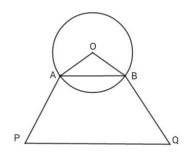
又 $:D \in AB_1$ 的中点

- $\therefore A_{i}B$ 经过点 D , 且点 D 是 $A_{i}B$ 的中点.
- ∵点 E 是 BC 的中点
- ∴ DE 是三角形 A,BC 的中位线
- $\therefore DE//A_iC$
- :: *DE* || A_1C , *DE* ⊄ 平面 ACC_1A_1 , A_1C ⊂ 平面 ACC_1A_1
- ∴ DE// 平面 ACC₁A₁
- (2) $: AB = AC, E \neq BC$ 中点
- $\therefore AE \perp BC$
- $\therefore DE//A_1C$, $A_1C \perp BC_1$
- $\therefore DE \perp BC_1$
- $\because DE \perp BC_1$, $AB_1 \perp BC_1$, $DE \vdash AB_1 = D$, $DE \subset \text{\Pi} \equiv AEB_1$, $AB_1 \subset \text{\Pi} \equiv AEB_1$
- ∴ $BC_1 \perp \neg \exists AEB_1$
- ∴ $AE \subset$ $⊕ \overline{\text{m}} AEB_1$
- $\therefore AE \perp BC_1$
- : AE ⊥BC₁, AE ⊥BC, BC I BC₁ = B, BC,BC₁ \subset 平面 BCC₁B₁
- ∴ AE ⊥平面 BCC₁B₁
- 【点评】本题主要考查立体几何中直线与平面平行,直线与平面垂直的知识点.第一题利用中位线证明线线平行得到线面平行即可.第二题关键在于通过线面垂直得到线线垂直,再证明线面垂直。对于学生空间立体几何想象能力要求较高.

17. (本小题满分 14 分)

某公园有一块以O为圆心半径为20米的圆形区域,为丰富市民的业余生活,现提出如下设计方案:如图,在圆形区域内搭建露天舞台,舞台为扇形OAB区域,其中两个端点A,B分别在圆周上;观众席为梯形 ABQP 内且在圆O外的区域,其中 AP=AB=BQ, $\angle PAB=\angle QBA=120^{\circ}$,且 AB,PQ 在点O的同侧,为保证视听效果,要求观众席内每一个观众到舞台O处的距离都不超过60米,设 $\angle OAB=\alpha$, $\alpha\in\left(0,\frac{\pi}{3}\right)$,问:对于任意 α ,

上述设计方案是否均能符合要求?



【解析】

过O向AB,PQ作垂线,垂足分别为D,F,过A向PQ作垂线,垂足为E

$$\angle OAB = \alpha$$
, $\alpha \in \left(0, \frac{\pi}{3}\right)$, $OA = 20$, $\text{fill } OD = 20\sin\alpha$, $AD = 20\cos\alpha$, $AB = 40\cos\alpha$

所以 $AP = AB = 40\cos\alpha$,因为 $\angle BAP = 120^{\circ}$,所以 $\angle PAE = 30^{\circ}$

在 $RT\triangle PAE$ 中, $AP=40\cos\alpha$, $\angle PAE=30^{\circ}$, 所以 $PE=20\cos\alpha$, $AE=DF=20\sqrt{3}\cos\alpha$

所以
$$OF = OD + DF = 20\sin\alpha + 20\sqrt{3}\cos\alpha$$
, $PF = PE + EF = 40\cos\alpha$

所以
$$PO^2 = PF^2 + OF^2 = (40\cos\alpha)^2 + (20\sin\alpha + 20\sqrt{3}\cos\alpha)^2 \left(0 < \alpha < \frac{\pi}{3}\right)$$

$$=1600\cos^2\alpha + 400\sin^2\alpha + 800\sqrt{3}\sin\alpha\cos\alpha + 1200\cos^2\alpha$$

$$= 400 \left(7 \cdot \frac{\cos 2\alpha + 1}{2} + \frac{1 - \cos 2\alpha}{2} + \sqrt{3} \sin 2\alpha \right) = 400 \left(4 + 3\cos 2\alpha + \sqrt{3} \sin 2\alpha \right)$$
$$= 1600 + 800 \sqrt{3} \sin \left(\frac{\pi}{3} + 2\alpha \right) \left(0 < \alpha < \frac{\pi}{3} \right)$$

当 $\alpha = \frac{\pi}{12}$, PO^2 有最大值为 $1600+800\sqrt{3}$,因为 $1600+800\sqrt{3}$ <3600,所以PO<60恒成立答:对于任意 α ,上述方案均是符合要求。

【点评】本题主要考察圆的垂径定理以及等腰梯形的几何性质,运用三角和差化简以及二倍角进行求最值,难度适中。

18. (本小题满分 16 分)

在平面直角坐标系 xOy 中,已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad (a > b > 0)$ 的离心率为 $\frac{\sqrt{2}}{2}$,且椭圆 C 短轴的一个顶点到一个焦点的距离等于 $\sqrt{2}$.

- (1) 求椭圆C的方程;
- (2) 设经过点P(1,2)的直线l交椭圆 $C \pm A$,B两点,点Q(m,0).
 - ①若对于任意直线l总存在点Q,使得QA = QB,求实数m的取值范围;
 - ②设点 F 为椭圆 C 的左焦点,若点 Q 为 ΔFAB 的外心,求实数 m 的值。

【解析】 (1): 离心率 $e = \frac{c}{a} = \frac{\sqrt{2}}{2}$, 椭圆 C 短轴的一个顶点到一个焦点的距离等于 $\sqrt{2}$,

$$\therefore b^2 + c^2 = \left(\sqrt{2}\right)^2, \quad \text{If } a = \sqrt{2},$$

$$\therefore c = 1, b^2 = a^2 - c^2 = 1.$$

∴椭圆 *C* 的方程为
$$\frac{x^2}{2} + y^2 = 1$$
.

(2) ①设点
$$A(x_1, y_1), B(x_2, y_2)$$
, 线段 AB 的中点为 $E(x_0, y_0)$,

∴设直线
$$l$$
的方程为 $y=k(x-2)$,

联立
$$\begin{cases} y = k(x-2), \\ \frac{x^2}{2} + y^2 = 1, \end{cases}$$
 可得 $(1+2k^2)x^2 - 8k^2 + 8k^2 - 2 = 0$,

∵直线
$$l$$
 与椭圆 C 有两个交点,可得 $\Delta = (8k^2)^2 - 4(1+2k^2)(8k^2-2) = -16k^2 + 8 > 0$,

$$\therefore 0 \le k^2 < \frac{1}{2}.$$

$$\therefore 0 \le m < \frac{1}{2}.$$

$$\therefore x_1 + x_2 = \frac{8k^2}{1 + 2k^2},$$

$$\therefore x_0 = \frac{x_1 + x_2}{2} = \frac{4k^2}{1 + 2k^2}, \quad y_0 = k(x_0 - 2) = \frac{-2k}{1 + 2k^2},$$

∴线段
$$AB$$
 中点 E 的坐标为 $\left(\frac{4k^2}{1+2k^2}, \frac{-2k}{1+2k^2}\right)$,

当 $k \neq 0$ 时,

线段 AB 的中垂线方程为
$$y + \frac{2k}{1+2k^2} = -\frac{1}{k} \left(x - \frac{4k^2}{1+2k^2} \right)$$
,

令
$$y = 0$$
 , 则可得 $x = \frac{2k^2}{1 + 2k^2}$,

$$\therefore QA = QB, Q(m,0)$$

$$\therefore m = \frac{2k^2}{1 + 2k^2} = 1 - \frac{1}{1 + 2k^2}, \quad \text{If } 0 < k^2 < \frac{1}{2}$$

故m的取值范围是 $\left(0,\frac{1}{2}\right)$.

当k=0时, Q点坐标为(0,0), 即m=0

综上可得: m 的范围为 $\left[0,\frac{1}{2}\right]$

② 由①
$$\Leftrightarrow x_1 = \frac{4k^2 + \sqrt{2 - 4k^2}}{1 + 2k^2}$$
, $\therefore y_1 = \frac{k\sqrt{2 - 4k^2} - 2k}{1 + 2k^2}$,

$$\boxtimes Q\left(\frac{2k^2}{1+2k^2},0\right)$$

 $: Q \to \triangle FAB$ 的外心,

$$\therefore QA = QF$$

$$\therefore \sqrt{\left(\frac{2k^2}{1+2k^2} - \frac{4k^2 + \sqrt{2-4k^2}}{1+2k^2}\right)^2 + \left(\frac{k\sqrt{2-4k^2} - 2k}{1+2k^2}\right)^2} = \frac{2k^2}{1+2k^2} + 1,$$

整理, 得 $16k^4 + 6k^2 - 1 = 0$,

解得
$$k^2 = \frac{1}{8}$$
 或 $k^2 = -\frac{1}{2}$ (舍)

此时
$$m = \frac{2k^2}{1+2k^2} = \frac{1}{5}$$
.

【点评】本题考查直线与椭圆的综合性质,本题难度适中,计算量较大。第(1)问很简单,利用离心率和短轴的一个顶点到一个焦点的距离直接求出;第(2)①中,点Q为AB的中垂线与x轴的交点,先求出AB的中垂线的方程,进而求出点Q的坐标,根据判别式大于 0,解出m的取值范围;②Q为 \triangle FAB的外心,QA = QF,可解出.

19. (本小题满分 16 分)

已知
$$f(x) = \ln x - \frac{2x-2}{x-1+2a}$$
, $a > 0$.

- (1) 当a=2时,求函数 f(x) 在图像 x=1 处的切线方程;
- (2) 若对任意 $x \in [1,+\infty)$, 不等式 $f(x) \ge 0$ 恒成立, 求 a 的取值范围;
- (3) 若 f(x) 存在极大值和极小值,且极大值小于极小值,求 a 的取值范围.

【解析】

(1)
$$a=2$$
, $f(x) = \ln x - \frac{2x-2}{x-1+4} = \ln x - \frac{2x-2}{x+3}$,

$$\iiint f'(x) = \frac{1}{x} - \frac{2(x+3) - (2x-2)}{(x+3)^2} = \frac{1}{x} - \frac{8}{(x+3)^2}, \quad f'(1) = 1 - \frac{8}{16} = \frac{1}{2}$$

又 f(1)=0-0=0,则函数 f(x) 图像在 x=1 处的切线方程为 $y-0=\frac{1}{2}(x-1)$,即 $y=\frac{1}{2}x-\frac{1}{2}$ 。

(2) 由题知
$$f'(x) = \frac{1}{x} - \frac{2(x-1+2a)-(2x-2)}{(x-1+2a)^2}$$
, 化简得 $f'(x) = \frac{(x-1)^2 + 4a^2 - 4a}{x(x-1+2a)^2}$,

又因为f(1)=0,要使 $f(x) \ge 0$ 恒成立,即使得 $f(x) \ge f(1)$ 。

①若 $4a^2 - 4a \ge 0$,即 $a \le 0$ 或 $a \ge 1$ 时, $f'(x) \ge 0$ 在区间 $[1,+\infty)$ 恒成立,则有 f(x) 在区间 $[1,+\infty)$ 为增函数,则有 $f(x) \ge f(1)$,又因为 a > 0,则得 $a \ge 1$ 。

②若 $4a^2 - 4a < 0$,即 0 < a < 1,则存在 $x_0 > 1$,使得 $f'(x_0) = 0$,在区间 $[1, x_0)$ 中 f'(x) < 0,则有 f(x) 在区间 $[1, x_0)$ 为减函数, $f(x_0) < f(1) = 0$,不符合题意。

综上可得a的取值范围为[1,+∞)。

(3)
$$f'(x) = \frac{x^2 - 2x + (2a - 1)^2}{x(x - 1 + 2a)^2} \quad (x \neq 2a - 1)$$

因为函数在(0,+∞)有两个极值点,

所以
$$\begin{cases} b^2 - 4ac > 0 \\ g(0) > 0 \end{cases}$$
 解得 $0 < a < \frac{1}{2}$ 或 $\frac{1}{2} < a < 1$

设极大值点为 x_1 , 极小值点为 x_2 , $0 < x_1 < x_2$

则
$$x_1 + x_2 = 2$$
, $x_1x_2 = (2a-1)^2$,所以 $x_1, x_2 \neq 2a-1$ 且 $x_1, x_2 \in (0,2)$

因为
$$f(x_1) < f(x_2)$$

所以
$$\ln x_1 - \ln x_2 < \frac{x_1 - x_2}{2a - 1}$$

$$|| \ln x_1 - \frac{x_1}{2a - 1}| < \ln x_2 - \frac{x_2}{2a - 1}|$$

设函数 $h(x) = \ln x - \frac{x}{2a-1}$, 所以函数在(0,2)上单调递增

$$h'(x) = \frac{1}{x} - \frac{1}{2a-1} \ge 0$$
, 解得 $a < \frac{1}{2}$

综上,
$$a$$
 的取值范围是 $\left(0,\frac{1}{2}\right)$

【点评】本题第 1 小问考查导数的几何性质,属于基础题;后两问考查极值、最值以及函数的单调性问题,计算量较大,计算需细心,难度与往年持平。

20. (本小题满分 16 分)

已知数列 $\left\{a_n\right\}$ 各项均为正数,且对任意 $n\in N^*$,都有 $\left(a_1a_2.....a_n\right)^2=a_1^{n+1}a_{n+1}^{n-1}$

- (1) 若 a_1 , $2a_2$, $3a_3$ 成等差数列, 求 $\frac{a_2}{a_1}$ 的值;
- (2) ①求证:数列 $\{a_n\}$ 为等比数列;
 - ②若对任意 $n \in N^*$,都有 $a_1 + a_2 + ... + a_n \le 2^n 1$,求数列 $\left\{a_n\right\}$ 的公比 q 的取值范围.

【解析】

$$(1)n=2,3$$
时,可得 $a_2^2=a_1a_3$,设 $a_2=a_1q$,则 $a_3=a_1q^2$ 又 $a_1+3a_3=4a_2$ $3q^2-4q+1=0$,解知得 $q=1$ 或 $\frac{1}{3}$

$$(2) (1)(a_1 a_2 \Lambda a_n)^2 = a_1^{n+1} a_{n+1}^{n-1}$$

$$(a_1 a_2 \Lambda \ a_{n-1})^2 = a_1^n a_n^{n-2} (n \ge 2)$$

$$\therefore a_n^2 = a_1 \frac{a_{n+1}^{n-1}}{a_n^{n-2}} \Rightarrow a_n^n = a_1 a_{n+1}^{n-1} (n \ge 2), a_{n-1}^{n-1} = a_1 a_n^{n-2} (n \ge 3)$$

$$a_1 a_n^{2n-2} = a_1 (a_{n+1} a_{n-1})^{n-1} (n \geq 3) \Rightarrow a_n^2 = a_{n+1} a_{n-1} (n \geq 3) \\ \mathbb{H} \frac{a_{n+1}}{a_n} = \frac{a_n}{a_{n-1}} (n \geq 3)$$

又由第一问得n = 2时也成立,:: $\{a_n\}$ 为等比数列

②
$$n = 1$$
 ⊨ 1 , $a_1 \le 1$

当
$$q \le 2$$
时, $a_n = a_1 q^{n-1} \le 2^{n-1}$, $\therefore \sum a_n \le 1 + 2 + 2^2 + \Lambda + 2^{n-1} = 2^n - 1$ 成立.

当
$$q > 2$$
时, 令 $f(n) = a_1 + a_2 + \Lambda + a_n - 2^n + 1 = \frac{a_1(1 - q^n)}{1 - q} - 2^n + 1$

$$\diamondsuit f(n) > 0$$
, 得 $\frac{a_1}{q-1}(q^n-1) > 2^n-1$

$$\Theta \ a_1 \le 1, q > 2 :: \frac{a_1}{q-1} < 1,$$

$$\frac{a_1}{q-1}q^n - \frac{a_1}{q-1} > 2^n - 1 \Rightarrow \frac{a_1}{q-1}q^n - 2^n > \frac{a_1}{q-1} - 1$$

$$\stackrel{\underline{}}{=} \frac{a_1}{q-1} q^n > 2^n$$
时,即 $n > \log_{\frac{q}{2}} \frac{q-1}{a_1}$ 时, $\frac{a_1}{q-1} q^n - 2^n > 0 > m-1$

即
$$f(n) > 0$$
,即 $a_1 + a_2 + \Lambda + a_n > 2^n - 1$.不符题意,舍去.

综上
$$q \in (0,2]$$