考点 15 常见非金属元素单质及其重要化合物 3——硫

一、选择题

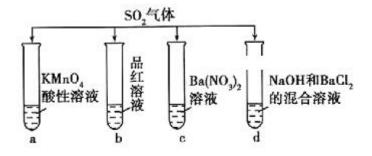
- 1. 下列关于 SO2 气体的说法正确的是
 - A. 无色无味

B. 难溶于水

C. 能使品红溶液褪色

D. 不具有氧化性

【答案】C


【解析】A. 二氧化硫为无色有刺激性气味气体,有毒,故 A 错误; B. 1 体积的水能溶解 40 体积二氧化硫,所以二氧化硫能溶于水,故 B 错误; C. 二氧化硫能和有色物质反应生成无色物质而具有漂白性,能使品红溶液褪色,故 C 正确; D. 二氧化硫既有氧化性又有还原性,一般显示为还原性,+4 价的 S 被氧化为+6 价; 但是也会有氧化性,如: $2H_2S+SO_2=3S$ (沉淀) $+2H_2O$,故 D 错误; 故选 C。

- 2. 下列有关硫元素及其化合物的说法正确的是
 - A. 硫黄矿制备硫酸经历两步: $S \xrightarrow{O_2/AM} SO_3 \xrightarrow{H_2O} H_2SO_4$
 - B. 酸雨与土壤中的金属氧化物反应后, 硫元素以单质的形式进入土壤中
 - C. 在燃煤中加入石灰石可减少 SO₂排放,发生的反应为 2CaCO₃+2SO₂+O₂^{高温} 2CO₂+2CaSO₄
 - D. 向溶液中加入 BaCl₂溶液后滴加硝酸,若产生不溶于硝酸的白色沉淀,则溶液必含 SO₄²⁻

【答案】C

【解析】A. S 燃烧产生 SO_2 ,不能产生 SO_3 ,A 错误; B. 酸雨中主要含有 H_2SO_3 、 H_2SO_4 ,与土壤中的金属氧化物反应后,硫元素以硫酸盐、亚硫酸盐的形式进入土壤中,B 错误; C. 煅烧石灰石会产生 CaO,CaO 是碱性氧化物,与酸性氧化物反应产生盐,使硫进入到炉渣中,从而减少了 SO_2 的排放,C 正确; D. 溶液中含有 Ag^+ 、 SO_4^2 -都会产生上述现象,因此不能确定一定含有 SO_4^2 ,D 错误; 故选 C。

3. 将 SO₂ 分别通入下列 4 种溶液中,有关说法正确的是

A. 试管 a 中实验可以证明 SO₂ 具有漂白性

- B. 试管 b 中溶液褪色,说明 SO2 具有强氧化性
- C. 试管 c 中能产生白色沉淀,说明 SO₂ 具有还原性
- D. 试管 d 中能产生白色沉淀, 该沉淀完全溶于稀硝酸

【答案】C

【解析】A、二氧化硫使酸性高锰酸钾溶液褪色,表现了还原性,选项 A 错误; B、品红褪色,说明二氧化硫有漂白性,选项 B 错误; C、二氧化硫被硝酸根氧化成硫酸根,生成硫酸钡沉淀,说明二氧化硫有还原性,选项 C 正确; D、二氧化硫在碱性条件下反应生成亚硫酸钡,与硝酸反应转化为硫酸钡沉淀,沉淀不溶解, 选项 D 错误; 故选 C。

- 4. 向蔗糖固体中滴加浓硫酸,观察到蔗糖变黑,体积膨胀,放出气体等现象,下列叙述错误的是
 - A. 上述过程中温度升高
 - B. 体积膨胀的主要原因是固体碳受热膨胀所致
 - C. 蔗糖生成碳,再生成二氧化碳
 - D. 放出的气体用 NaOH 溶液吸收,可能得到 5 种盐

【答案】B

【解析】A. 蔗糖的脱水反应是放热反应,反应后温度升高,故 A 正确; B. 体积膨胀的主要原因是反应生成了气体,使得生成的固体碳疏松多孔,体积膨胀,故 B 错误; C. 蔗糖脱水时先碳化,生成碳,生成的碳再与浓硫酸反应生成二氧化碳,故 C 正确; D. 放出的气体中含有二氧化碳、二氧化硫,用 NaOH 溶液吸收,可能得到碳酸钠、碳酸氢钠、亚硫酸钠、亚硫酸氢钠,亚硫酸钠比较容易被氧化,因此溶液中可能存在硫酸钠,因此可能出现 5 种盐,故 D 正确; 故选 B。

5. 下列反应,与硫酸型酸雨的形成肯定无关的是

A. $SO_2+2H_2S=3S+2H_2O$

B. $SO_2+H_2O=H_2SO_3$

C. $2SO_2+O_2=2SO_3$

D. SO₃+H₂O=H₂SO₄

【答案】A

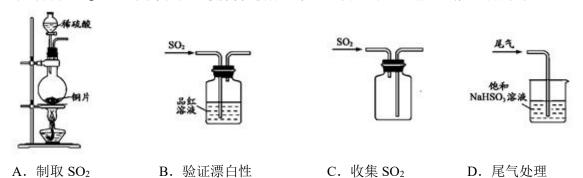
【解析】A. SO₂+2H₂S=3S+2H₂O,反应过程中消耗二氧化硫生成单质硫,不能生成硫酸,不是酸雨形成的反应,与硫酸型酸雨的形成肯定无关,故 A 符合; B. 酸雨形成过程可以是二氧化硫和水反应生成亚硫酸,亚硫酸和氧气反应生成硫酸,与酸雨形成有关,故 B 不符合; C. 空气中的二氧化硫气体在粉尘做催化剂的条件下 2SO₂+O₂=2SO₃生成三氧化硫,三氧化硫再与雨水反应 SO₃+H₂O=H₂SO₄形成酸雨,故 C 不符合; D. 三氧化硫与雨水反应 SO₃+H₂O=H₂SO₄形成酸雨,故 D 不符合; 故选 A。

6. 家用消毒柜常用臭氧(O₃)消毒,在消毒过程中通过放电发生反应:

 $3O_2(g)==2O_3(g)$ $\Delta H=+144.8 \text{ kJ·mol}^{-1}$; 下列关于臭氧说法不正确的是

- A. O₂和 O₃ 互为同素异形体
- B. O₃ 具有较强的氧化性
- C. O₂比 O₃稳定
- D. 植物油等食物为防止细菌污染,可放入消毒柜中消毒

【答案】D


【解析】 O_2 和 O_3 由氧元素形成的两种不同的单质,互为同素异形体,A 项正确; O_3 能量高,很容易分解,具有较强的氧化性,B 项正确; O_2 比 O_3 具有的能量低,稳定,C 项正确; 植物油等食物含有不饱和键,放入消毒柜中消毒,易被氧化而变质,D 项错误。

- 7. 下列关于浓硫酸的叙述正确的是
 - A. 浓硫酸具有吸水性, 因而能使蔗糖炭化
 - B. 浓硫酸在常温下能够使铁、铝等金属钝化
 - C. 浓硫酸是一种干燥剂, 能够干燥氨气
 - D. 浓硫酸在常温下可迅速与铜片反应放出二氧化硫气体

【答案】B

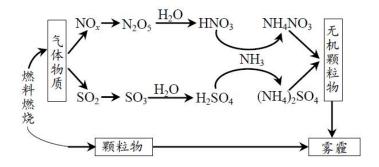
【解析】A. 浓硫酸使蔗糖炭化,体现浓硫酸的脱水性,故不选 A; B. 浓硫酸具有强氧化性,所以浓硫酸在常温下能够使铁、铝等金属钝化,故选 B; C. 氨气是碱性气体,不能用浓硫酸干燥,一般用碱石灰干燥氨气,不选 C; D. 浓硫酸在加热条件下与铜片反应放出二氧化硫气体,在常温下不反应,故不选 D。

8. 下列制取 SO₂、验证其漂白性、收集并进行尾气处理的装置和原理能达到实验目的的是

【答案】B

【解析】A.根据金属活动顺序表可知稀 H_2SO_4 与铜片不反应,故 A 错误; $B.SO_2$ 能使品红溶液褪色,体现其漂白性,故 B 正确; $C.SO_2$ 密度比空气大,应"长进短出",故 C 错误; $D.SO_2$ 不与 $NaHSO_3$ 反应,所以无法用 $NaHSO_3$ 溶液吸收 SO_2 ,故 D 错误。答案:B。

9. CO₂ 气体中含有少量的 SO₂, 欲用如图所示装置得到干燥纯净的 CO₂, 则下列叙述正确的是



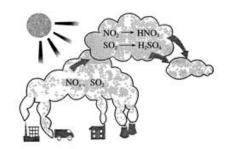
- A. 先让混合气体通过盛有 NaOH 溶液的洗气瓶①,再通过盛有浓 H₂SO₄ 的洗气瓶②
- B. 先让混合气体通过盛有饱和 NaHCO₃ 溶液的洗气瓶①,再通过盛有浓 H₂SO₄ 的洗气瓶②
- C. 先让混合气体通过盛有 Na₂CO₃ 溶液的洗气瓶②,再通过盛有浓 H₂SO₄ 的洗气瓶①
- D. 先让混合气体通过盛有饱和 NaHCO3 溶液的洗气瓶②,再通过盛有浓 H2SO4的洗气瓶①

【答案】D

【解析】A. 由题给装置图可知,气流方向应从右向左,且 NaOH 溶液能吸收 CO_2 和 SO_2 气体,故 A 错误; B. 由题给装置图可知,气流方向应从右向左,故 B 错误; C. Na₂CO₃溶液既与 SO_2 反应,又与 CO_2 反应,故 C 错误; D. NaHCO₃与 SO_2 发生反应: $2NaHCO_3+SO_2=Na_2SO_3+2CO_2+H_2O$,将 SO_2 除去,再通过浓硫酸得到干燥纯净的 CO_2 ,故 D 正确; 故选 D。

10. 研究表明, 氮氧化物(NOx)和二氧化硫在形成雾霾时与大气中的氨有关, 其转化关系如下图所示。

下列关于雾霾及其形成的叙述中,不正确的是


- A. 与燃料燃烧有关
- B. 涉及氧化还原反应
- C. 雾霾中含有 NH4NO3 和(NH4)2SO4
- D. NH₃ 是形成无机颗粒物的催化剂

【答案】D

【解析】A. 有图可知,与燃料有关,故A正确; B. 由图可知,硫元素的化合价升高,化合价发生变化,属于氧化还原反应,故B正确; C. 由图示可知雾霾中含有硝酸铵和硫酸铵,故C正确; D. 由图示可知 氨气参与反应生成铵盐,为反应物,不是催化剂,故D错误;故选D。

二、非选择题

11. 如图所示是酸雨的形成示意图。根据图示回答下列问题。

	~~! ~ ! ~ ! ~ ! ! ~ ! !	
(1)	下列气体容易形成酸雨的是	

A. CO_2 B. SO_2 C. N_2 D. NO_2

(2) 现有雨水样品 1 份,每隔一段时间测定该雨水样品的 pH,所得数据如下:

测试时间/h	0	1	2	3	4
与水的 pH	4.73	4.63	4.56	4.55	4.55

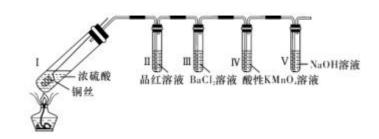
分析数据,回答下列问题:

①雨水样品的 pH 变化的原因是	(用化学方程式表示)。
	(/ i/ i i i j / j / j x x (i x x x x x x x x x x x x x x x x

- ②如果将刚取样的上述雨水和自来水相混合,pH 将变 ,原因是 (用化学 方程式表示)。
- (3) 下列措施中,可减少酸雨产生的途径的是 (填字母)。
- ①少用煤作燃料 ②把工厂烟囱造高 ③燃料脱硫 ④在已酸化的土壤中加石灰 ⑤开发新 能源

- A. (1)(2)(3) B. (2)(3)(4)(5) C. (1)(3)(5) D. (1)(3)(4)(5)

- 【答案】(1) BD (2) $SO_2+H_2O \Longrightarrow H_2SO_3$ 、 $2H_2SO_3+O_2=2H_2SO_4$ 变小 $Cl_2+2H_2O+SO_2$
- $=H_2SO_4+2HCl(\vec{y}H_2SO_3+Cl_2+H_2O=H_2SO_4+2HCl)$ (3) C


【解析】(1) 酸雨是指 pH 小于 5.6 的雨水,酸雨分为硫酸型酸雨和硝酸型酸雨,分别是由 SO2和 NOx 引起, 而 N_2 和 CO_2 是空气组成成分, 不能引起酸雨, 故选项 BD 正确; 答案选 BD;

- (2) ①空气中SO₂与水生成H₂SO₃,NO_x的氧化物与水生成HNO₃,酸雨放置一段时间后,H₂SO₃被空 气中的氧气氧化成 H₂SO₄,酸性增强,其反应方程式为 SO₂+H₂O → H₂SO₃、2H₂SO₃+O₂=2H₂SO₄; ②自来水常用 Cl₂ 消毒,用上述雨水与自来水混合,SO₂与 Cl₂反应: Cl₂+2H₂O+SO₂=H₂SO₄+2HCl 或 H₂SO₃+Cl₂+H₂O=H₂SO₄+2HCl, 因此溶液的 pH 将变小;
- (3) ①要减少酸雨的产生,需减少 SO₂ 的排放,大气中 SO₂来源主要是化石燃料的燃烧以及含硫矿石 的冶炼和硫酸、造纸等生产过程中产生的尾气,煤中含有硫,燃烧过程中生成大量 SO2,因此少用煤作 燃料或对燃料进行脱硫处理,是减少酸雨的有效措施,故①符合题意;
- ②把烟囱造高,不能减少酸雨的生成,故②不符合题意;

- ③燃料脱硫,是减少酸雨的有效措施,故③符合题意;
- ④在已酸化的土壤中加石灰是为了中和酸,不是为了减少酸雨,故④不符合题意;
- ⑤开发新能源能从根本上杜绝 SO₂ 的产生,故⑤符合题意;

综上所述选项 C 正确; 答案选 C。

12. 某同学利用如下图所示装置完成了浓硫酸和 SO₂ 的性质实验(夹持装置已省略)。请回答下列问题

- (1) 将螺旋状的铜丝伸入浓硫酸中,发生反应的化学方程式为。
- (2) 实验中, 试管Ⅱ中的品红溶液 (填现象)。
- (3) 下列说法不正确的是 (填字母代号)
- A. 反应后,将试管 I 中的液体逐滴加入水中,溶液呈蓝色 B. 试管III中出现白色浑浊
- C. 试管IV中的酸性 KMnO₄溶液褪色 D. 试管 V 中的 NaOH 溶液用于吸收尾气
- (4) 若反应中有 0.02 mol H₂SO₄ 被还原,则反应产生的气体体积为 mL(标准状况下)。

【答案】 $Cu+2H_2SO_4(浓)$ $\stackrel{\Delta}{=} CuSO_4+SO_2 \uparrow +2H_2O$ 品红溶液褪色 B 448

【解析】(1) 铜和浓硫酸发生反应的化学方程式为: $Cu+2H_2SO_4(浓) \stackrel{\Delta}{=} CuSO_4+SO_5$, $\uparrow+2H_2O_5$

- (2) SO₂能使品红溶液褪色,故试管 II 中的现象为品红溶液褪色;
- (3) A. 试管 I 中有 CuSO4 生成,将反应后的溶液滴入水中,溶液呈蓝色,故 A 正确;
- B. 试管III中 SO₂ 不会和 BaCl₂ 反应, 所以不会出现白色浑浊, 故 B 错误;
- C. 试管Ⅳ中 SO₂与酸性 KMnO₄溶液反应, 使溶液褪色, 故 C 正确;
- D. 试管 V 中的 NaOH 溶液可以和 SO_2 反应,所以可以用于吸收尾气,故 D 正确;故答案为: B;
- (4) $\text{Cu+2H}_2\text{SO}_4(浓)$ $\stackrel{\triangle}{=}$ $\text{CuSO}_4+\text{SO}_2$ \uparrow +2 H_2O ,反应中生成 1mol SO₂ 被还原的 H_2SO_4 为 1mol,若反应中有 0.02 mol H_2SO_4 被还原,则反应产生的 SO₂ 气体为 0.02 mol,体积为 448mL(标准状况下)。