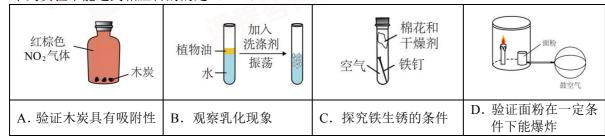
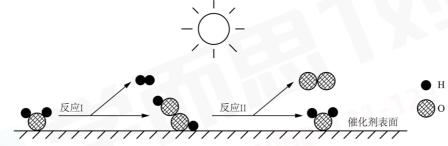

2020 深圳市中考化学试题与解析

- 一、选择题(共10小题,每小题1.5分,共15分。在每小题给出的4个选项中,只有一项符合题意。)
- 1. 下列描述正确的是()
 - A. "滴水成冰"是化学变化
 - B. "花香四溢"表明分子在不断运动
 - C. "釜底抽薪"是为了降低可燃物的着火点
 - D. "百炼成钢"指生铁经多次煅炼转化为纯铁
- 2. 右图为铕在元素周期表中的相关信息,下列有关铕的说法正确的是()
 - A. 铕原子中的质子数为 63
 - B. 铕的相对原子质量是 152.0g
 - C. 2Eu²⁺表示 2 个铕原子
 - D. Eu₂O₃ 中铕元素的化合价为+6 价

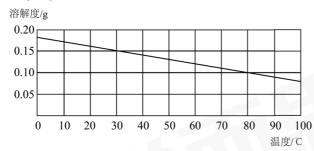


- 3. 化学与人类的科学技术、生产生活密切相关。下列说法错误的是()
 - A. 钛合金可应用于火箭和航天飞机
 - B. 头盔缓冲层中的塑料属于合成材料
 - C. 垃圾分类有利于废旧金属的回收利用
 - D. 霉变的花生经冲洗、蒸煮后仍可食用
- 4. 小深同学用思维导图梳理了 Na₂CO₃ 的相关知识, 其中描述错误的是()



- 5. "艾叶香,香满堂,粽子香,香厨房。"据研究,粽子的香味源于粽叶的主要成分——对乙烯基苯酚(化学式为 C_8H_8O)。下列说法正确的是(
 - A. 对乙烯基苯酚不属于有机物
 - B. 对乙烯基苯酚由3种元素组成
 - C. 对乙烯基苯酚中 C、H、O 三种元素的质量比为 8:8:1
 - D. 对乙烯基苯酚由8个C原子、8个H原子、1个O原子构成

6. 下列实验不能达到相应目的的是(


7. 我国化学家研究出一种新型催化剂,在太阳光照射下实现了水的高效分解。该反应过程的微观示意图如下:

下列说法错误的是()

- A. 表示的物质属于氧化物
- B. 反应 I 的化学方程式为 H₂O ^{催化剂} H₂O₂ + H₂ ↑
- C. 反应 II 中, 反应前后原子的种类和数目均不变
- D. 该成果对氢能源的推广应用有重要的实践意义

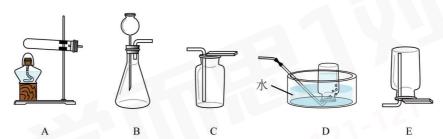
8. 下图为 Ca(OH)₂ 的溶解度曲线;下表为 20℃时溶解度的相对大小。

溶解度/g	一般称为
< 0.01	难溶
0.01~1	微溶
1~10	可溶
>10	易溶

下列说法正确的是()

- A. Ca(OH)₂属于易溶物质
- B. Ca(OH)₂的溶解度随温度的升高而增大
- C. 30℃时, Ca(OH)₂ 的饱和溶液中溶质与溶剂的质量比为 3:20
- D. 70℃时 Ca(OH)₂ 的饱和溶液,降温到 50℃时没有析出固体

9. 下列方法能达到除杂目的的是(


1 / 4/4 / 12	1 2 424 (E110-CE 4)4/4 (E11442/C)					
选项	物质 (括号内为杂质)	方法				
Α	CH ₄ (CO)	点燃混合气体				
В	铜粉 (炭粉)	在空气中灼烧固体混合物				
C	O ₂ (水蒸气)	将混合气体通过浓硫酸				
D	NaCl (CaCl ₂)	加水溶解、过滤				

- 10. 如图,将胶头滴管中的物质 X 滴入装有物质 Y 的试管中,两物质充分反应。下列说 法错误的是 ()
 - A. X 为稀硫酸, 若反应有气泡产生, 则生成的气体一定是 H₂
 - B. X 为 AgNO₃ 溶液, Y 为 Cu 片, 根据现象可判断金属活动性: Cu>Ag
 - C. X为BaCl₂溶液,Y为Na₂SO₄溶液,反应产生白色沉淀
 - D. X 为稀盐酸, Y 为 Al(OH)₃,该反应可应用于治疗胃酸过多症

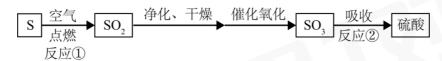
二、非选择题(共3题,共25分)

11. (8分) 初步学习运用简单的装置和方法制取某些气体,是初中学生的化学实验技能应达到的要求。 (1) 某学习小组将实验室制取常见气体的相关知识归纳如下:

气体	方法 (或原理)	发生装置	收集装置
O_2	方法 1: 加热氯酸钾 方法 2: 加热① (填化学式)	均可选择 A 装置 (可根据需要添加棉花)	均可选择 ④ 装
	方法 3: 分解过氧化氢溶液	均可选择③装置	置(填标 号)
CO_2	化学方程式为②	(填标号)	亏)

(2) 该小组将制取的 O_2 和 CO_2 (各一瓶) 混淆了,设计如下方案进行区分。

方案	现象	结论
方案 1: 将带火星的木条分别伸入两个集 气瓶中	若带火星的木条①	则该瓶气体是 O ₂
方案 2: 向两个集气瓶中分别滴入少量的 ②	若溶液变浑浊	则该瓶气体是 CO ₂
方案 3: 向两个集气瓶中分别倒入少量的水,振荡后再滴加几滴紫色石蕊溶液	若紫色石蕊溶液变为 ③色	则该瓶气体是 CO ₂


(3) 制取气体的过程包括: a. 选择制取装置; b. 验证所得气体; c. 明确反应原理。据此,该小组总结出实验室里制取气体的一般思路为 (填"甲"或"乙"或"丙")。

甲. a→b→c

 \angle . $b \rightarrow a \rightarrow c$

丙. c→a→b

- 12. (8分)下列流程可用于制备硫酸铵。
 - I. 制硫酸:

- (1) 反应①的化学方程式为_____
- (2) 反应②为 $SO_3 + H_2O = H_2SO_4$,该反应属于______反应(填基本反应类型)。
- Ⅱ. 合成氨:

- (3) "原料气"中 N_2 的制备: N_2 约占空气体积的五分之 ,可通过分离液态空气的方法得到。
- (4) "原料气"中 H_2 的制备:高温时, CH_4 和水蒸气在催化剂作用下反应得到 H_2 和 CO_2 ,该反应的化学方程式为
- (5) NH₃ 溶于水时形成氨水。室温下,氨水的 pH_____7 (填">"或"<")。
- III. 制备硫酸铵:
 - (6) 将 NH₃ 通入稀释后的硫酸溶液中,得到硫酸铵。用水稀释浓硫酸时,需将___ 缓慢地加入 中,并不断搅拌。
 - (7) (NH₄)₂SO₄在农业生产中常被用作 (填标号)。
 - A. 氮肥
- B. 磷肥
- C. 钾肥

2.7

2.6-

2.5-

- 13. (9分)氧气是人类生产活动的重要资源。
 - (1) 下列属于 O₂ 的化学性质的是 (填标号)。
 - A. O₂能支持燃烧
 - B. O₂的密度比空气的密度略大
 - $C. O_2$ 在低温、高压时能变为液体或固体
 - (2) 小圳同学进行实验室制备 O₂ 的相关探究。
 - 【查阅】他得知在 $KClO_3$ 分解制 O_2 的反应中, Fe_2O_3 可作催化剂。
 - 【实验】他用电子秤称取 0.49g Fe_2O_3 和一定量的 $KClO_3$,充分混合后加热至 $KClO_3$ 完全分解,冷却至室温,称得剩余固体的质量为 $1.98g_0$ 。
 - 【计算】①剩余固体中 KCl 的质量是_____g。 ②该反应生成 O₂ 的质量(根据化学方程式写出完整的计算步骤)。
 - 【思考】他发现制备 O_2 较慢,猜测 $KClO_3$ 和 Fe_2O_3 的质量比可能会影响反应的快慢。
 - 【探究】③他调节 $KClO_3$ 和 Fe_2O_3 的质量比制备 O_2 ,整理数据绘制出 右图,从图中得出 $KClO_3$ 和 Fe_2O_3 最佳质量比是 。
 - 【结论】④根据质量守恒定律,请你计算出小圳同学在【实验】中称取的 KClO₃ 的质量为______g, KClO₃ 和 Fe₂O₃ 的质量比是(填最简比),不是最佳质量比。

KClO,和Fe,O,的质量比