专题 22 二次函数

知识点一：二次函数的基本概念与特征

1. 二次函数的概念：一般地，形如 $y = ax^2 + bx + c$ （a, b, c 是常数，$a \neq 0$）的函数，叫做二次函数。这里需要强调：和一元二次方程类似，二次项系数 $a \neq 0$，而 b, c 可以为零。二次函数的定义域是全体实数。

2. 二次函数 $y = ax^2 + bx + c$ 的结构特征:

 (1) 等号左边是函数，右边是关于自变量 x 的二次式，x 的最高次数是 2.

 (2) a, b, c 是常数，a 是二次项系数，b 是一次项系数，c 是常数项.

知识点二：二次函数的基本形式及其性质

1. $y = ax^2$ 的性质：（a 的绝对值越大，抛物线的开口越小）

<table>
<thead>
<tr>
<th>a 的符号</th>
<th>开口方向</th>
<th>顶点坐标</th>
<th>对称轴</th>
<th>性质</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a > 0$</td>
<td>向上</td>
<td>$(0, 0)$</td>
<td>y 轴</td>
<td>$x > 0$ 时，y 随 x 的增大而增大；$x < 0$ 时，y 随 x 的增大而减小；$x = 0$ 时，y 有最小值 0.</td>
</tr>
<tr>
<td>$a < 0$</td>
<td>向下</td>
<td>$(0, 0)$</td>
<td>y 轴</td>
<td>$x > 0$ 时，y 随 x 的增大而减小；$x < 0$ 时，y 随 x 的增大而增大；$x = 0$ 时，y 有最大值 0.</td>
</tr>
</tbody>
</table>

2. $y = ax^2 + c$ 的性质：（a 的符号）

<table>
<thead>
<tr>
<th>a 的符号</th>
<th>开口方向</th>
<th>顶点坐标</th>
<th>对称轴</th>
<th>性质</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a > 0$</td>
<td>向上</td>
<td>$(0, c)$</td>
<td>y 轴</td>
<td>$x > 0$ 时，y 随 x 的增大而增大；$x < 0$ 时，y 随 x 的减小而增大；$x = 0$ 时，y 有最大值 c.</td>
</tr>
</tbody>
</table>
3. \(y = a(x-h)^2 \) 的性质：（左加右减）

<table>
<thead>
<tr>
<th>a 的符号</th>
<th>开口方向</th>
<th>顶点坐标</th>
<th>对称轴</th>
<th>性质</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a > 0)</td>
<td>向上</td>
<td>((h, 0))</td>
<td>(X=h)</td>
<td>(x>h) 时，(y) 随 (x) 的增大而增大；(x<h) 时，(y) 随 (x) 的增大而减小；(x=h) 时，(y) 有最小值 0．</td>
</tr>
<tr>
<td>(a < 0)</td>
<td>向下</td>
<td>((h, 0))</td>
<td>(X=h)</td>
<td>(x>h) 时，(y) 随 (x) 的增大而减小；(x<h) 时，(y) 随 (x) 的增大而增大；(x=h) 时，(y) 有最大值 0．</td>
</tr>
</tbody>
</table>

4. \(y = a(x-h)^2 + k \) 的性质：

<table>
<thead>
<tr>
<th>a 的符号</th>
<th>开口方向</th>
<th>顶点坐标</th>
<th>对称轴</th>
<th>性质</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a > 0)</td>
<td>向上</td>
<td>((h, k))</td>
<td>(X=h)</td>
<td>(x>h) 时，(y) 随 (x) 的增大而增大；(x<h) 时，(y) 随 (x) 的增大而减小；(x=h) 时，(y) 有最小值 (k)．</td>
</tr>
<tr>
<td>(a < 0)</td>
<td>向下</td>
<td>((h, k))</td>
<td>(X=h)</td>
<td>(x>h) 时，(y) 随 (x) 的增大而减小；(x<h) 时，(y) 随 (x) 的增大而增大；(x=h) 时，(y) 有最大值 (k)．</td>
</tr>
</tbody>
</table>

知识点三：二次函数图象的平移

1. 平移步骤：

方法 1：(1) 将抛物线解析式转化成顶点式 \(y = a(x-h)^2 + k \)，确定其顶点坐标 \((h, k)\)；

(2) 保持抛物线 \(y = ax^2 \) 的形状不变，将其顶点平移到 \((h, k)\) 处，具体平移方法如下：
2. 平移规律：在原有函数的基础上，“h”值正右移，负左移；k”值正上移，负下移”。概括成八个字“左加右减，上加下减”。

方法 2:

(1) $y = ax^2 + bx + c$ 沿 y 轴平移：向上（下）平移 m 个单位，$y = ax^2 + bx + c$ 变成

$$y = ax^2 + bx + c + m \quad \text{(或 } y = ax^2 + bx + c - m \text{)}$$

(2) $y = ax^2 + bx + c$ 沿轴平移：向左（右）平移 m 个单位，$y = ax^2 + bx + c$ 变成

$$y = a(x + m)^2 + b(x + m) + c \quad \text{(或 } y = a(x - m)^2 + b(x - m) + c \text{)}$$

知识点四：二次函数 $y = a(x - h)^2 + k$ 与 $y = ax^2 + bx + c$ 的比较

从解析式上看，$y = a(x - h)^2 + k$ 与 $y = ax^2 + bx + c$ 是两种不同的表达形式，后者通过配方可以得到前者。

即 $y = a\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a}$，其中 $h = -\frac{b}{2a}$，$k = \frac{4ac - b^2}{4a}$。

知识点五：二次函数 $y = ax^2 + bx + c$ 图象的画法

五点绘图法：利用配方法将二次函数 $y = ax^2 + bx + c$ 化为顶点式 $y = a(x - h)^2 + k$，确定其开口方向、对称轴及顶点坐标，然后在对称轴两侧，左右对称地描点画图。一般我们选取的五点为：顶点，与 y 轴的交点 $(0, c)$，以及 $(0, c)$ 关于对称轴对称的点 $(2h, c)$，与 x 轴的交点 $(x_1, 0)$，$(x_2, 0)$ （若与 x 轴没有交点，则取两组关于对称轴对称的点）。

画草图时应抓住以下几点：开口方向，对称轴，顶点，与 x 轴的交点，与 y 轴的交点。
知识点六：二次函数 $y = ax^2 + bx + c$ 的性质

1. 当 $a > 0$ 时，抛物线开口向上，对称轴为 $x = -\frac{b}{2a}$，顶点坐标为 $\left(-\frac{b}{2a}, \frac{4ac-b^2}{4a}\right)$。

当 $x < -\frac{b}{2a}$ 时，y 随 x 的增大而减小；
当 $x > -\frac{b}{2a}$ 时，y 随 x 的增大而增大；
当 $x = -\frac{b}{2a}$ 时，y 有最小值 $\frac{4ac-b^2}{4a}$。

2. 当 $a < 0$ 时，抛物线开口向下，对称轴为 $x = -\frac{b}{2a}$，顶点坐标为 $\left(-\frac{b}{2a}, \frac{4ac-b^2}{4a}\right)$。

当 $x < -\frac{b}{2a}$ 时，y 随 x 的增大而增大；
当 $x > -\frac{b}{2a}$ 时，y 随 x 的增大而减小；
当 $x = -\frac{b}{2a}$ 时，y 有最大值 $\frac{4ac-b^2}{4a}$。

知识点七：二次函数解析式的表示方法

1. 一般式：$y = ax^2 + bx + c$（a，b，c 为常数，$a \neq 0$）；

2. 顶点式：$y = a(x-h)^2 + k$（a，h，k 为常数，$a \neq 0$）；

3. 两根式：$y = a(x-x_1)(x-x_2)$（$a \neq 0$，x_1，x_2 是抛物线与 x 轴两交点的横坐标）。

注意：任何二次函数的解析式都可以化成一般式或顶点式，但并非所有的二次函数都可以写成交点式。

只有抛物线与 x 轴有交点，即 $b^2 - 4ac \geq 0$ 时，抛物线的解析式才可以用交点式表示。二次函数解析式的这三种形式可以互化。
知识点八：二次函数的图象与各项系数之间的关系

1. 二次项系数 a

二次函数 $y=ax^2+bx+c$ 中，a 作为二次项系数，显然 $a \neq 0$.

(1) 当 $a > 0$ 时，抛物线开口向上，a 的值越大，开口越小，反之 a 的值越小，开口越大；

(2) 当 $a < 0$ 时，抛物线开口向下，a 的值越小，开口越小，反之 a 的值越大，开口越大.

总结起来，a 决定了抛物线开口的大小和方向，a 的正负决定开口方向，$|a|$ 的大小决定开口的大小.

2. 一次项系数 b

在二次项系数 a 确定的前提下，b 决定了抛物线的对称轴．

(1) 在 $a > 0$ 的前提下，

当 $b > 0$ 时，$\frac{-b}{2a} < 0$，即抛物线的对称轴在 y 轴左侧；

当 $b = 0$ 时，$\frac{-b}{2a} = 0$，即抛物线的对称轴就是 y 轴；

当 $b < 0$ 时，$\frac{-b}{2a} > 0$，即抛物线对称轴在 y 轴的右侧．

(2) 在 $a < 0$ 的前提下，结论刚好与上述相反，即

当 $b > 0$ 时，$\frac{-b}{2a} > 0$，即抛物线的对称轴在 y 轴右侧；

当 $b = 0$ 时，$\frac{-b}{2a} = 0$，即抛物线的对称轴就是 y 轴；

当 $b < 0$ 时，$\frac{-b}{2a} < 0$，即抛物线对称轴在 y 轴的左侧．

总结起来，在 a 确定的前提下，b 决定了抛物线对称轴的位置．

ab 的符号的判定：对称轴 $x = \frac{-b}{2a}$ 在 y 轴左边，则 $ab > 0$，在 y 轴的右侧，则 $ab < 0$，概括的说就是“左同右异”．
3. 常数项 c

(1) 当 $c > 0$ 时，抛物线与 y 轴的交点在 x 轴上方，即抛物线与 y 轴交点的纵坐标为正；

(2) 当 $c = 0$ 时，抛物线与 y 轴的交点为坐标原点，即抛物线与 y 轴交点的纵坐标为 0；

(3) 当 $c < 0$ 时，抛物线与 y 轴的交点在 x 轴下方，即抛物线与 y 轴交点的纵坐标为负。

总结起来，c 决定了抛物线与 y 轴交点的位置。

总之，只要 a, b, c 都确定，那么这条抛物线就是唯一确定的。

知识点九：二次函数图象的对称

二次函数图象的对称一般有五种情况，可以用一般式或顶点式表达

1. 关于 x 轴对称

$$y = ax^2 + bx + c$$ 关于 x 轴对称后，得到的解析式是
$$y = -ax^2 - bx - c$$

$$y = a(x-h)^2 + k$$ 关于 x 轴对称后，得到的解析式是
$$y = -a(x-h)^2 - k$$

2. 关于 y 轴对称

$$y = ax^2 + bx + c$$ 关于 y 轴对称后，得到的解析式是
$$y = ax^2 - bx + c$$

$$y = a(x-h)^2 + k$$ 关于 y 轴对称后，得到的解析式是
$$y = a(x+h)^2 + k$$

3. 关于原点对称

$$y = ax^2 + bx + c$$ 关于原点对称后，得到的解析式是
$$y = -ax^2 + bx - c$$

$$y = a(x-h)^2 + k$$ 关于原点对称后，得到的解析式是
$$y = -a(x+h)^2 - k$$

4. 关于顶点对称（即：抛物线绕顶点旋转 180°）

$$y = ax^2 + bx + c$$ 关于顶点对称后，得到的解析式是
$$y = -ax^2 - bx + c - \frac{h^2}{2a}$$
关于顶点对称后，得到的解析式是 \(y = a(x - h)^2 + k \)。

5. 关于点 \((m, n)\) 对称

\[y = a(x - h)^2 + k \] 关于点 \((m, n)\) 对称后，得到的解析式是

\[y = -a(x + h - 2m)^2 + 2(n - k) \]

根据对称的性质，显然无论作何种对称变换，抛物线的形状一定不会发生变化，因此 \(|a|\) 永远不变。求抛物线的对称抛物线的表达式时，可以依据题意或方便运算的原则，选择合适的形式，习惯上是先确定原抛物线（或表达式已知的抛物线）的顶点坐标及开口方向，再确定其对称抛物线的顶点坐标及开口方向，然后再写出其对称抛物线的表达式。

知识点十：二次函数与一元二次方程

1. 二次函数与一元二次方程的关系（二次函数与 \(x\) 轴交点情况）：

一元二次方程 \(ax^2 + bx + c = 0 \) 是二次函数 \(y = ax^2 + bx + c \) 当函数值 \(y = 0 \) 时的特殊情况。

图象与 \(x\) 轴的交点个数：

（1）当 \(\Delta = b^2 - 4ac > 0 \) 时，图象与 \(x\) 轴交于两点 \(A(x_1, 0), B(x_2, 0) (x_1 \neq x_2) \)，其中的 \(x_1, x_2 \) 是一元二次方程 \(ax^2 + bx + c = 0 (a \neq 0) \) 的两根。这两点间的距离 \(AB = |x_2 - x_1| = \frac{\sqrt{b^2 - 4ac}}{|a|} \)。

（2）当 \(\Delta = 0 \) 时，图象与 \(x\) 轴只有一个交点；

（3）当 \(\Delta < 0 \) 时，图象与 \(x\) 轴没有交点。

① 当 \(a > 0 \) 时，图象落在 \(x\) 轴的上方，无论 \(x\) 为任何实数，都有 \(y > 0 \)；

②当 \(a < 0 \) 时，图象落在 \(x\) 轴的下方，无论 \(x\) 为任何实数，都有 \(y < 0 \)。

2. 抛物线 \(y = ax^2 + bx + c \) 的图象与 \(y\) 轴一定相交，交点坐标为 \((0, c)\)；

一、二次函数解析式的确定

根据已知条件确定二次函数解析式，常利用待定系数法。用待定系数法求二次函数解析式必须根据题目的特点，选择适当的形式，才能使解题简便。一般来说，有如下几种情况：
1. 已知抛物线上三点的坐标，一般选用一般式；

2. 已知抛物线顶点或对称轴或最大（小）值，一般选用顶点式；

3. 已知抛物线与 x 轴的两个交点的横坐标，一般选用两根式；

4. 已知抛物线上纵坐标相同的两点，常选用顶点式。

二、二次函数考查重点与常见题类型总结

类型 1. 考查二次函数的定义、性质，有关试题常出现在选择题中；

类型 2. 综合考查正比例、反比例、一次函数、二次函数的图像，习题的特点是在同一直角坐标系内考查两个函数的图像，试题类型为选择题；

类型 3. 考查用待定系数法求二次函数的解析式，有关习题出现的频率很高，习题类型有中档解答题和选拔性的综合题；

类型 4. 考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值，有关试题为解答题；

类型 5. 考查代数与几何的综合能力，常见的中考题作为专项压轴题。

三、二次函数常用解题方法总结

(1) 求二次函数的图象与 x 轴的交点坐标，需转化为一元二次方程；

(2) 求二次函数的最大（小）值需要利用配方法将二次函数由一般式转化为顶点式；

(3) 根据图象的位置判断二次函数 $y = ax^2 + bx + c$ 中 a, b, c 的符号，或由二次函数中 a, b, c 的符号判断图象的位置，要数形结合；

(4) 二次函数的图象关于对称轴对称，可利用这一性质，求和已知一点对称的点坐标，或已知与 x 轴的一个交点坐标，可由对称性求出另一个交点坐标。

(5) 与二次函数有关的还有二次三项式，二次三项式 $ax^2 + bx + c(a \neq 0)$ 本身就是所含字母 x 的二次函数；下面以 $a > 0$ 时为例，揭示二次函数、二次三项式和一元二次方程之间的内在联系；
【例题 1】（2020•枣庄）如图，已知抛物线 y=ax^2+bx+c 的对称轴为直线 x=1．给出下列结论：

①ac<0； ②b^2−4ac>0； ③2a−b=0； ④a−b+c=0．

其中，正确的结论有（ ）

A. 1 个 B. 2 个 C. 3 个 D. 4 个

【答案】C

【分析】根据抛物线的开口方向、对称轴、与 x 轴、y 轴的交点，综合进行判断即可．

【解析】抛物线开口向下，a<0，对称轴为 x=−\frac{b}{2a}=1，因此 b>0，与 y 轴交于正半轴，因此 c>0．

于是有：ac<0，因此①正确；

由 x=−\frac{b}{2a}=1，得 2a+b=0，因此③不正确．
抛物线与 x 轴有两个不同交点，因此 $b^2 - 4ac > 0$，②正确。

由对称轴 $x = 1$，抛物线与 x 轴的一个交点为 $(3, 0)$，对称性可知另一个交点为 $(-1, 0)$，因此 $a - b + c = 0$，故④正确。

综上所述，正确的结论有①②④。

【例题 2】如图，抛物线 $y = x^2 - bx + c$ 交 x 轴于点 $A(1, 0)$，交 y 轴于点 B，对称轴是 $x = 2$。

（1）求抛物线的解析式；

（2）点 P 是抛物线对称轴上的一个动点，是否存在点 P，使 $\triangle PAB$ 的周长最小？若存在，求出点 P 的坐标；若不存在，请说明理由。

【答案】见解析。

【解析】（1）由题意得，

\[
\begin{cases}
1 - b + c = 0 \\
b = \frac{-2}{2}
\end{cases}
\]

解得 $b = 4$，$c = 3$，

∴抛物线的解析式为：

\[y = x^2 - 4x + 3\]

（2）点 A 与点 C 关于 $x = 2$ 对称，

连接 BC 与 $x = 2$ 交于点 P，则点 P 即为所求，

根据抛物线的对称性可知，点 C 的坐标为 $(3, 0)$，

$y = x^2 - 4x + 3$ 与 y 轴的交点为 $(0, 3)$，

∴设直线 BC 的解析式为：$y = kx + b$，
解得，\(k = -1, \quad b = 3 \).

∴ 直线 BC 的解析式为：\(y = -x + 3 \).

则直线 BC 与 x=2 的交点坐标为：\((2, 1)\)

∴ 点 P 的交点坐标为：\((2, 1)\).

【点拨】本题考查的是待定系数法求二次函数的解析式和最短路径问题，掌握待定系数法求解析式的一般步骤和轴对称的性质是解题的关键。

【例题 3】（2020·杭州）在平面直角坐标系中，设二次函数 \(y_1 = x^2 + bx + a \), \(y_2 = ax^2 + bx + 1 \)（a，b 是实数，a≠0）。

（1）若函数 \(y_1 \) 的对称轴为直线 \(x=3 \)，且函数 \(y_1 \) 的图象经过点 \((a, b)\)，求函数 \(y_1 \) 的表达式。

（2）若函数 \(y_1 \) 的图象经过点 \((r, 0)\)，其中 \(r≠0 \)，求证：函数 \(y_2 \) 的图象经过点 \(\left(\frac{1}{r}, 0\right) \)。

（3）设函数 \(y_1 \) 和函数 \(y_2 \) 的最小值分别为 \(m \) 和 \(n \)，若 \(m + n = 0 \)，求 \(m, n \) 的值。

【答案】见解析。

【分析】（1）利用待定系数法解决问题即可。

（2）函数 \(y_1 \) 的图象经过点 \((r, 0)\)，其中 \(r≠0 \)，可得 \(r^2 + br + a = 0 \)，推出 \(1 + \frac{b}{r} + \frac{a}{r^2} = 0 \)，即 \(a \left(\frac{1}{r}\right)^2 + b \cdot \frac{1}{r} + 1 = 0 \)，推出 \(\frac{1}{r} \) 是方程 \(ax^2 + bx + 1 \) 的根，可得结论。

（3）由题意 \(a>0 \)，\(m = \frac{4a-b^2}{4a}, \quad n = \frac{4a-b^2}{4a} \)，根据 \(m + n = 0 \)，构建方程可得结论。
【解析】（1）由题意，得到 $-\frac{b}{2}=3$，解得 $b=-6$.

∴函数 y_1 的图象经过 $(a, -6)$，

∴$a^2-6a+a=-6$，

解得 $a=2$ 或 3，

∴函数 $y_1=x^2-6x+2$ 或 $y_1=x^2-6x+3$.

（2）∵函数 y_1 的图象经过点 $(r, 0)$，其中 $r\neq0$，

∴$r^2+br+a=0$，

∴$1+\frac{b}{r}+\frac{a}{r^2}=0$，

即 $a\left(\frac{1}{r}\right)^2+b\cdot\frac{1}{r}+1=0$，

∴$\frac{1}{r}$ 是方程 ax^2+bx+1 的根，

即函数 y_2 的图象经过点 $\left(\frac{1}{r}, 0\right)$.

（3）由题意 $a>0$，∴$m=\frac{4a-b^2}{4}$，$n=\frac{4a-b^2}{4a}$，

∴$m+n=0$，

∴$\frac{4a-b^2}{4}+\frac{4a-b^2}{4a}=0$，

∴$（4a-b^2）（a+1）=0$，

∴$a+1>0$，

∴$4a-b^2=0$，

∴$m=n=0$.
《二次函数》单元精品检测试卷

本套试卷满分 120 分，答题时间 90 分钟

一、选择题（每小题 3 分，共 30 分）

1.（2020•泸州）已知二次函数 \(y = x^2 - 2bx + 2b^2 - 4c \)（其中 \(x \) 是自变量）的图象经过不同两点 \(A (1 - b, m) \)，\(B (2b + c, m) \)，且该二次函数的图象与 \(x \) 轴有公共点，则 \(b + c \) 的值为（ ）

A. -1 B. 2 C. 3 D. 4

【答案】C

【解析】由二次函数 \(y = x^2 - 2bx + 2b^2 - 4c \) 的图象与 \(x \) 轴有公共点，

\[
\begin{align*}
-2b \pm \sqrt{(-2b)^2 - 4 \times (2b^2 - 4c)} & \geq 0, \\
b^2 - 4c & \leq 0 \quad (1) \\
\end{align*}
\]

由抛物线的对称轴 \(x = -\frac{-2b}{2} = b \)，抛物线经过不同两点 \(A (1 - b, m) \)，\(B (2b + c, m) \)，

\[b = \frac{1 - b + 2b + c}{2} \quad \text{即} \quad c = b - 1 \quad (2),\]

②代入 (1) 得，\(b^2 - 4 (b - 1) \leq 0, \) 即 \((b - 2)^2 \leq 0, \) 因此 \(b = 2, \)

\[c = b - 1 = 2 - 1 = 1,\]

\[
\therefore b + c = 2 + 1 = 3
\]

2.（2020•绥化）将抛物线 \(y = 2 (x - 3)^2 + 2 \) 向左平移 3 个单位长度，再向下平移 2 个单位长度，得到抛物线的解析式是（ ）

A. \(y = 2 (x - 6)^2 \)
B. \(y = 2 (x - 6)^2 + 4 \)
C. \(y = 2x^2 \)
D. \(y = 2x^2 + 4 \)

【答案】C

【分析】根据“左加右减，上加下减”的原则进行解答即可.
【解析】将抛物线 \(y=2(x-3)^2+2 \) 向左平移 3 个单位长度所得抛物线解析式为：
\[
 y=2(x-3+3)^2+2
\]
即 \(y=2x^2+2 \);

再向下平移 2 个单位为：
\[
 y=2x^2+2-2
\]
即 \(y=2x^2 \).

3. （2020•滨州）对称轴为直线 \(x=1 \) 的抛物线 \(y=ax^2+bx+c \)（a、b、c 为常数，且 \(a \neq 0 \)）如图所示，小明同学得出了以下结论：① \(abc < 0 \)，② \(b^2 > 4ac \)，③ \(4a+2b+c > 0 \)，④ \(3a+c > 0 \)，⑤ \(a+b \leq m(am+b) \)（m 为任意实数），⑥ 当 \(x < -1 \) 时，y 随 x 的增大而增大．其中结论正确的个数为（ ）

A. 3
B. 4
C. 5
D. 6

【答案】A

【分析】由抛物线的开口方向判断 a 的符号，由抛物线与 y 轴的交点判断 c 的符号，然后根据对称轴及抛物线与 x 轴交点情况进行推理，进而对所得结论进行判断．

【解析】① 由图象可知： \(a > 0, \; c < 0 \)，

\[
 \frac{b}{2a} = 1
\]

\[
 b = -2a < 0
\]

\[
 abc < 0, \; 原 \; 错误；
\]

② ② 抛物线与 x 轴有两个交点，

\[
 b^2 - 4ac > 0
\]

\[
 b^2 > 4ac, \; 原 \; 正确；
\]

③ 当 \(x = 2 \) 时，\(y = 4a+2b+c < 0, \; 原 \; 错误；

3a+c > 0, \; 原 \; 错误；

⑤ ⑤ \(a+b \leq m(am+b) (m \; 为 \; 任 \; 何 \; 实 \; 数) \)，

\[
 a+b \leq m(am+b)
\]

⑥ ⑥ 当 \(x < -1 \) 时，y 随 x 的增大而增大．

∴ ① ② ⑤ ⑥ 正确，共 5 个．
④ 当 $x = -1$ 时，$y = a - b + c > 0$，

∴ $3a + c > 0$，故④正确；

⑤ 当 $x = 1$ 时，y 的值最小，此时，$y = a + b + c$，

而当 $x = m$ 时，$y = am^2 + bm + c$，

所以 $a + b + c \leq am^2 + bm + c$，

故 $a + b \leq am^2 + bm$，即 $a + b \leq m(am + b)$，故⑤正确，

⑥ 当 $x < -1$ 时，y 随 x 的增大而减小，故⑥错误．

4．（2020•成都）关于二次函数 $y = x^2 + 2x - 8$，下列说法正确的是（　　）

A．图象的对称轴在 y 轴的右侧

B．图象与 y 轴的交点坐标为 $(0, 8)$

C．图象与 x 轴的交点坐标为 $(2, 0)$ 和 $(-4, 0)$

D．y 的最小值为 -9

【答案】D

【分析】根据题目中的函数解析式和二次函数的性质，可以判断各个选项中的结论是否正确，从而可以解答本题．

【解析】二次函数 $y = x^2 + 2x - 8 = (x + 1)^2 - 9 = (x + 4)(x - 2)$，

∴ 该函数的对称轴是直线 $x = -1$，在 y 轴的左侧，故选项 A 错误；

当 $x = 0$ 时，$y = -8$，即该函数与 y 轴交于点 $(0, -8)$，故选项 B 错误；

当 $y = 0$ 时，$x = 2$ 或 $x = -4$，即图象与 x 轴的交点坐标为 $(2, 0)$ 和 $(-4, 0)$，故选项 C 错误；

当 $x = -1$ 时，该函数取得最小值 $y = -9$，故选项 D 正确

5．（2020•河北）如图，现要在抛物线 $y = x(4 - x)$ 上找点 $P(a, b)$，针对 b 的不同取值，所找点 P 的个数，三人的说法如下，
甲：若 $b=5$，则点 P 的个数为 0；

乙：若 $b=4$，则点 P 的个数为 1；

丙：若 $b=3$，则点 P 的个数为 1。

下列判断正确的是（ ）

A. 乙错，丙对
B. 甲和乙都错
C. 乙对，丙错
D. 甲错，丙对

【答案】C

【分析】求出抛物线的顶点坐标为 $（2，4）$，由二次函数的性质对甲、乙、丙三人的说法分别进行判断，即可得出结论。

【解析】

$y = x（4-x）= -x^2 + 4x = -(x-2)^2 + 4$，

抛物线的顶点坐标为 $(2, 4)$，

在抛物线上的点 P 的纵坐标最大为 4，

甲、乙的说法正确；

若 $b=3$，则抛物线上纵坐标为 3 的点有 2 个，

丙的说法不正确。

6. (2020南充) 关于二次函数 $y=ax^2 - 4ax - 5(a≠0)$ 的三个结论：① 对任意实数 m，都有 $x_1 = 2+m$ 与 $x_2 = 2 - m$ 对应的函数值相等；② 若 $3≤x≤4$，对应的 y 的整数值有 4 个，则 $-\frac{4}{3} < a ≤ -1$ 或 $1≤a < \frac{4}{3}$；③ 若抛物线与 x 轴交于不同两点 $A，B$，且 $AB≤6$，则 $a< -\frac{5}{4}$ 或 $a≥1$。其中正确的结论是（ ）
【答案】D

【解析】∵二次函数 $y=ax^2-4ax-5$ 的对称轴为直线 $x=\frac{4a}{2a}=2$，
∴$x_1=2+m$ 与 $x_2=2-m$ 关于直线 $x=2$ 对称，
∴对任意实数 m，都有 $x_1=2+m$ 与 $x_2=2-m$ 对应的函数值相等。
故①正确；
当 $x=3$ 时，$y=-3a-5$，当 $x=4$ 时，$y=-5$。
若 $a>0$ 时，当 $3 \leq x \leq 4$ 时，$-3a-5 \leq y \leq -5$，
∴当 $3 \leq x \leq 4$ 时，对应的 y 的整数值有 4 个，
∴$1 \leq a \leq \frac{4}{3}$。
若 $a<0$ 时，当 $3 \leq x \leq 4$ 时，$-5 \leq y \leq -3a-5$，
∴当 $3 \leq x \leq 4$ 时，对应的 y 的整数值有 4 个，
∴$-\frac{4}{3} < a \leq -1$。
故②正确；
若 $a>0$，抛物线与 x 轴交于不同两点 A，B，且 $AB \leq 6$，
∴$\triangle > 0$，$25a-20a-5 \geq 0$，
∴$\begin{cases} 16a^2 + 20a > 0, \\ 5a - 5 \geq 0 \end{cases}$，
∴$a \geq 1$。
若 $a<0$，抛物线与 x 轴交于不同两点 A，B，且 $AB \leq 6$，
∴$\triangle > 0$，$25a-20a-5 \leq 0$，
\[
\begin{align*}
&16a^2 + 20a > 0, \\
&5a - 5 \leq 0
\end{align*}
\]

\[a < -\frac{5}{4}\]

综上所述：当 \(a < -\frac{5}{4}\) 或 \(a \geq 1\) 时，抛物线与 \(x\) 轴交于不同两点 \(A, B\)，且 \(AB \leq 6\).

7. (2020•甘孜州) 如图，二次函数 \(y = a(x+1)^2 + k\) 的图象与 \(x\) 轴交于 \(A (-3, 0), B\) 两点，下列说法错误的是（

【答案】D

【解析】观察图形可知 \(a < 0\)，由抛物线的解析式可知对称轴 \(x = -1\)，

\(A (-3, 0), A, B\) 关于 \(x = -1\) 对称，

\(B (1, 0),\)

故 \(A, B, C\) 正确

8. (2020•安顺) 已知二次函数 \(y = ax^2 + bx + c\) 的图象经过 \((-3, 0)\) 与 \((1, 0)\) 两点，关于 \(x\) 的方程 \(ax^2 + bx + c + m = 0 (m > 0)\) 有两个根，其中一个根是 3．则关于 \(x\) 的方程 \(ax^2 + bx + c + n = 0 (0 < n < m)\) 有两个整数根，这两个整数根是（

A. \(-2\) 或 0 B. \(-4\) 或 2 C. \(-5\) 或 3 D. \(-6\) 或 4
【答案】B

【分析】根据题目中的函数解析式和二次函数与一元二次方程的关系，可以得到关于 \(x \) 的方程 \(ax^2+bx+c+n=0 \) （\(0<n<m \)）的两个整数根，从而可以解答本题。

【解析】∵ 二次函数 \(y=ax^2+bx+c \) 的图象经过（-3，0）与（1，0）两点，

∴ 当 \(y=0 \) 时，\(0=ax^2+bx+c \) 的两个根为 -3 和 1，函数 \(y=ax^2+bx+c \) 的对称轴是直线 \(x=-1 \)，

又∵ 关于 \(x \) 的方程 \(ax^2+bx+c+m=0 \)（\(m>0 \)）有两个根，其中一个根是 3。

∴ 方程 \(ax^2+bx+c+m=0 \)（\(m>0 \)）的另一个根为 -5，函数 \(y=ax^2+bx+c \) 的图象开口向上，

∴ 关于 \(x \) 的方程 \(ax^2+bx+c+n=0 \)（\(0<n<m \)）有两个整数根，

∴ 这两个整数根是 -4 或 2

9. （2020•遂宁）二次函数 \(y=ax^2+bx+c \)（\(a≠0 \)）的图象如图所示，对称轴为直线 \(x=-1 \)，下列结论不正确的是（　　）

A. \(b^2>4ac \)

B. \(abc>0 \)

C. \(a-c<0 \)

D. \(am^2+bm\geq a-b \)（\(m \) 为任意实数）

【答案】C

【分析】根据二次函数的图象与系数的关系即可求出答案。

【解析】由图象可得：\(a>0, c>0, \triangle=b^2-4ac>0, -\frac{b}{2a}=-1, \)
∴ $b=2a>0$, $b^2>4ac$, 故 A 选项不合题意，

∴ $abc>0$, 故 B 选项不合题意，

当 $x=-1$ 时, $y<0$,

∴ $a-b+c<0$.

∴ $a-c<0$, 即 $a-c>0$, 故 C 选项符合题意，

当 $x=m$ 时, $y=am^2+bm+c$，

当 $x=-1$ 时, y 有最小值为 $a-b+c$.

∴ $am^2+bm+c=a-b+c$，

∴ $am^2+bm+a-b$, 故 D 选项不合题意.

10. (2020·衢州) 二次函数 $y=x^2$ 的图象平移后经过点 $(2, 0)$，则下列平移方法正确的是（ ）

A. 向左平移 2 个单位, 向下平移 2 个单位

B. 向左平移 1 个单位, 向上平移 2 个单位

C. 向右平移 1 个单位, 向下平移 1 个单位

D. 向右平移 2 个单位, 向上平移 1 个单位

【答案】C

【分析】求出平移后的抛物线的解析式，利用待定系数法解决问题即可.

【解析】A、平移后的解析式为 $y=(x+2)^2-2$, 当 $x=2$ 时, $y=14$, 本选项不符合题意．

B、平移后的解析式为 $y=(x+1)^2+2$, 当 $x=2$ 时, $y=11$, 本选项不符合题意．

C、平移后的解析式为 $y=(x-1)^2-1$, 当 $x=2$ 时, $y=0$, 函数图像经过 $(2, 0)$, 本选项符合题意．

D、平移后的解析式为 $y=(x-2)^2+1$, 当 $x=2$ 时, $y=1$, 本选项不符合题意．

二、填空题（10 个题，每小题 3 分，共 33 分）
11.（2020•泰安）已知二次函数 \(y=ax^2+bx+c \) （a，b，c是常数，a≠0）的y与x的部分对应值如下表:

<table>
<thead>
<tr>
<th>x</th>
<th>-5</th>
<th>-4</th>
<th>-2</th>
<th>0</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>6</td>
<td>0</td>
<td>-6</td>
<td>-4</td>
<td>6</td>
</tr>
</tbody>
</table>

下列结论:

①a＞0；
②当x=2时，函数最小值为-6；
③若点(-8，y1)，点(8，y2)在二次函数图象上，则y1＜y2；
④方程ax²+bx+c= -5有两个不相等的实数根。

其中，正确结论的序号是______．（把所有正确结论的序号都填上）

【答案】①③④．

【分析】任意取表格中的三组对应值，求出二次函数的关系式，再根据二次函数的图象与系数之间的关系进行判断即可．

【解析】将(-4，0)(0, -4)(2, 6)代入y=ax²+bx+c得，

\[
\begin{align*}
16a - 4b + c &= 0 \\
2b + c &= -4 \\
4a + 2b + c &= 6 \\
\end{align*}
\]

解得，\(a = 1 \)，\(b = 3 \)，\(c = -4 \)

∴抛物线的关系式为\(y=x^2+3x-4 \)．

\(a=1＞0 \)，因此①正确；

对称轴为\(x=-\frac{3}{2} \)，当\(x=-\frac{3}{2} \)时，函数的值最小，因此②不正确；

把(-8，y1)(8，y2)代入关系式得，\(y_1=64 - 24 - 4 = 36 \)，\(y_2=64 + 24 - 4 = 84 \)，因此③正确；

方程ax²+bx+c= -5，也就是\(x^2+3x-4 = -5 \)，即\(x^2+3x+1=0 \)，由\(b^2 - 4ac = 9 - 4 = 5 > 0 \)可得\(x^2+3x+1=0 \)有两个不相等的实数根，因此④正确；
正确的结论有：①③④

12. (2020•哈尔滨) 抛物线 $y = 3(x - 1)^2 + 8$ 的顶点坐标为 _______.

【答案】(1，8).

【分析】已知抛物线顶点式 $y = a(x - h)^2 + k$，顶点坐标是 (h, k).

【解析】抛物线 $y = 3(x - 1)^2 + 8$ 是顶点式，

∴顶点坐标是 (1，8).

13. (2020•无锡) 请写出一个函数表达式，使其图象的对称轴为 y 轴：________.

【答案】$y = x^2$ (答案不唯一).

【分析】根据形如 $y = ax^2$ 的二次函数的性质直接写出即可.

【解析】图象的对称轴是 y 轴，

∴函数表达式 $y = x^2$ (答案不唯一)，

故答案为：$y = x^2$ (答案不唯一).

14. (2020•上海) 如果将抛物线 $y = x^2$ 向上平移 3 个单位，那么所得新抛物线的表达式是 _______.

【答案】$y = x^2 + 3$.

【分析】直接根据抛物线向上平移的规律求解.

【解析】抛物线 $y = x^2$ 向上平移 3 个单位得到 $y = x^2 + 3$.

15. (2020•黔东南州) 抛物线 $y = ax^2 + bx + c$ ($a \neq 0$) 的部分图象如图所示，其与 x 轴的一个交点坐标为 (3，0)，对称轴为 $x = -1$，则当 $y < 0$ 时，x 的取值范围是 _______.

【答案】\(-3 < x < 1\).

【分析】根据抛物线与x轴的一个交点坐标和对称轴，由抛物线的对称性可求抛物线与x轴的另一个交点，再根据抛物线的增减性可求当y<0时，x的取值范围。

【解析】
• 物线\(y=ax^2+bx+c(a \neq 0)\)与x轴的一个交点坐标为\((-3, 0)\)，对称轴为\(x=-1\)，

 ∴ 抛物线与x轴的另一个交点为\((1, 0)\)，

 由图象可知，当y<0时，x的取值范围是\(-3 < x < 1\)。

16. 如图，已知抛物线\(y=x^2+bx+c\)经过点\((0, -3)\)，请你确定一个b的值，使该抛物线与x轴的一个交点在\((1, 0)\)和\((3, 0)\)之间。你确定的b的值是______。

【答案】\(-\frac{1}{2}\)

【解析】把\((0, -3)\)代入抛物线的解析式求出c的值，在\((1, 0)\)和\((3, 0)\)之间取一个点，把它的坐标代入解析式即可求出答案。

把\((0, -3)\)代入抛物线的解析式得：\(c=-3\)，

 ∴\(y=x^2+bx-3\)。确定一个b的值，使该抛物线与x轴的一个交点在\((1, 0)\)和\((3, 0)\)之间，假如过\((2, 0)\)，代入，得

 \(0=4+2b-3\)，

 ∴\(b=-\frac{1}{2}\)。故答案为\(-\frac{1}{2}\)。

17. 如图，是二次函数\(y=ax^2+bx+c(a \neq 0)\)的图象的一部分，给出下列命题：\(①a+b+c=0; ②b > 2a; ③ax^2+bx+c=0\)
的两根分别为 -3 和 1；④a - 2b + c > 0．其中正确的命题是____．（只要求填写正确命题的序号）

【答案】①③．

【解析】由图象可知过（1，0），代入得到 a+b+c=0；根据 \[-\frac{b}{2a} = -1 \]，推出 b=2a；根据图象关于对称轴对称，得出与 X 轴的交点是 (−3，0)，(1，0)；由 a - 2b + c = a - 2b - a - b = -3b < 0，根据结论判断即可．

由图象可知：过（1，0），代入得：a+b+c=0，∴①正确；

\[-\frac{b}{2a} = -1, \]

∴b=2a，∴②错误；

根据图象关于对称轴对称，

与 X 轴的交点是 (−3，0)，(1，0)，∴③正确；

∴a - 2b + c = a - 2b - a - b = -3b < 0，∴④错误．

故答案为：①③．

18.如图，抛物线 y=x^2+2x+m（m<0）与 x 轴相交于点 A（x_1，0）、B（x_2，0），点 A 在点 B 的左侧．当 x=x_2-2 时，y____0（填“>”“=”或“<”号）．

【答案】<．

【解析】由二次函数根与系数的关系求得关系式，求得 m 小于 0，当 x=x_2-2 时，从而求得 y 小于 0．
∵抛物线 \(y = -x^2 + 2x + m\) (\(m < 0\)) 与 x 轴相交于点 A (\(x_1, 0\))、B (\(x_2, 0\))，

\[
\therefore x_1 + x_2 = 2, \quad x_1x_2 = m > 0
\]

\[
\therefore m < 0
\]

\[
\therefore x_1 + x_2 = 2
\]

\[
\therefore x = 2 - x_2
\]

\[
\therefore x = x_1 < 0
\]

\[
\therefore y < 0 \text{ 故答案为} <.
\]

19. 二次函数 \(y = -x^2 - 2x + 3\) 的图象的顶点坐标为_______.

【答案】(-1, 4).

【分析】把二次函数解析式转化成顶点式形式，然后写出顶点坐标即可.

【解析】

∵

\[
y = -x^2 - 2x + 3
\]

\[
= -(x^2 + 2x + 1 - 1) + 3
\]

\[
= -(x + 1)^2 + 4,
\]

∴顶点坐标为（-1, 4）.

20. (2020•乐山) 我们用符号[x]表示不大于 x 的最大整数. 例如: [1.5] = 1, [- 1.5] = -2. 那么:

（1）当 -1<[x]≤2 时，x 的取值范围是______;

（2）当 -1≤x<2 时，函数 \(y = x^2 - 2a[x]+3\) 的图象始终在函数 \(y = [x]+3\) 的图象下方. 则实数 a 的范围是 ____.

【答案】（1）0≤x≤2.

（2）\(a < -1\) 或 \(a ≥ \frac{3}{2}\).

【解析】（1）由题意

\[
-1 < [x] ≤ 2,
\]

\[
\therefore 0 ≤ x ≤ 2.
\]
（2）由题意：当 -1 ≤ x < 2 时，函数 y = x^2 - 2a + 3 的图象始终在函数 y = x + 3 的图象下方，

则有 x = -1 时，1 + 2a + 3 < -1 + 3，解得 a < -1，

或 x = 2 时，4 - 2a + 3 ≤ 1 + 3，解得 $a \leq \frac{3}{2}$，

三、解答题（6 小题，共 57 分）

21. （7 分）（2020•宁波）如图，在平面直角坐标系中，二次函数 $y = ax^2 + 4x - 3$ 图象的顶点是 A，与 x 轴交于 B、C 两点，与 y 轴交于点 D．点 B 的坐标是（1，0）．

（1）求 A、C 两点的坐标，并根据图象直接写出当 y > 0 时 x 的取值范围．

（2）平移该二次函数的图象，使点 D 恰好落在点 A 的位置上，求平移后图象所对应的二次函数的表达式．

【答案】见解析。

【分析】（1）利用待定系数法求出 a，再求出点 C 的坐标即可解决问题．

（2）由题意点 D 平移的 A，抛物线向右平移 2 个单位，向上平移 4 个单位，由此可得抛物线的解析式．

【解析】（1）把 B（1，0）代入 $y = ax^2 + 4x - 3$，得 0 = a + 4 - 3，解得 $a = -1$，

∴ $y = -x^2 + 4x - 3 = -(x - 2)^2 + 1$，

∴ A（2，1），

∵ 对称轴 x = 2，B，C 关于 x = 2 对称，

∴ C（3，0），

∴ 当 y > 0 时，1 < x < 3.
∵点 $D (0, -3)$，抛物线向右平移 2 个单位，向上平移 4 个单位，可得抛物线的解析式为 $y = - (x - 4)^2 + 5$.

22.（10 分）如图，已知抛物线 $y = ax^2 + bx + c$ 经过 $A (-2, 0)$，$B (4, 0)$，$C (0, 4)$ 三点.

（1）求该抛物线的解析式；

（2）经过点 B 的直线交 y 轴于点 D，交线段 AC 于点 E；若 $BD = 5DE$.

①求直线 BD 的解析式；

②已知点 Q 在该抛物线的对称轴 l 上，且纵坐标为 1，点 P 是该抛物线上位于第一象限的动点，且在 l 右侧，点 R 是直线 BD 上的动点，若 $\triangle PQR$ 是以点 Q 为直角顶点的等腰直角三角形，求点 P 的坐标.

【答案】见解析。

【分析】（1）根据交点式设出抛物线的解析式，再将点 C 坐标代入抛物线交点式中，即可求出 a，即可得出结论；

（2）①先利用待定系数法求出直线 AC 的解析式，再利用相似三角形得出比例式求出 BF，进而得出点 E 坐标，最后用待定系数法，即可得出结论；

②先确定出点 Q 的坐标，设点 $P (x, -\frac{1}{2}x^2 + x + 4) (1 < x < 4)$，得出 $PG = x - 1$，$GQ = -\frac{1}{2}x^2 + x + 3$，再利用三垂线构造出 $\triangle PQG \cong \triangle QRH (AAS)$，得出 $RH = GQ = -\frac{1}{2}x^2 + x + 3$，$QH = PG = x - 1$，进而得出 $R (-\frac{1}{2}x^2 + x + 4, 2 - x)$，最后代入直线 BD 的解析式中，即可求出 x 的值，即可得出结论.

【解析】（1）∵抛物线 $y = ax^2 + bx + c$ 经过 $A (-2, 0)$，$B (4, 0)$，
设抛物线的解析式为 \(y = a(x+2)(x-4) \)。

将点 \(C \) 坐标 \((0, 4)\) 代入抛物线的解析式为 \(y = a(x+2)(x-4) \) 中，得 \(-8a = 4\)，

\[\therefore a = -\frac{1}{2}, \]

\[\therefore \text{抛物线的解析式为} \quad y = -\frac{1}{2}(x+2)(x-4) = -\frac{1}{2}x^2+x+4; \]

（2）① 如图 1，

设直线 \(AC \) 的解析式为 \(y = kx+b' \)，

将点 \(A (-2, 0) \)，\(C (0, 4) \)，代入 \(y = kx+b' \) 中，得 \(\begin{cases} -2k + b' = 0, \\ b' = 4 \end{cases} \)，

\[\therefore \begin{cases} k = 2, \\ b' = 4 \end{cases} \]

\[\therefore \text{直线} \ AC \text{ 的解析式为} \quad y = 2x + 4, \]

过点 \(E \) 作 \(EF \perp \text{x 轴于} F \)，

\[\therefore \text{OD} \parallel \text{EF}, \]

\[\therefore \triangle BOD \sim \triangle BFE, \]

\[\therefore \frac{OB}{BF} = \frac{BD}{BE}. \]

\[\therefore B = (4, 0), \therefore OB = 4, \]

\[\therefore BD = 5DE, \]

\[\therefore \frac{BD}{BE} = \frac{BD}{BD+DE} = \frac{5DE}{5DE+BE} = \frac{5}{6}. \]

\[\therefore BF = \frac{BE}{BD} \times OB = \frac{6}{5} \times 4 = \frac{24}{5}. \]

\[\therefore OF = BF - OB = \frac{24}{5} - 4 = \frac{4}{5}. \]

将 \(x = -\frac{4}{5} \) 代入直线 \(AC : y = 2x + 4 \) 中，得 \(y = 2 \times \left(-\frac{4}{5}\right) + 4 = \frac{12}{5}. \)
设直线 BD 的解析式为 $y = mx + n$，

\[
\begin{cases}
4m + n = 0 \\
-\frac{4}{5}m + n = \frac{12}{5}
\end{cases}
\]

\[
\begin{cases}
m = -\frac{1}{2} \\
n = 2
\end{cases}
\]

∴ 直线 BD 的解析式为 $y = -\frac{1}{2}x + 2$；

② 题抛物线与 x 轴的交点坐标为 $A(-2, 0)$ 和 $B(4, 0)$，

∴ 抛物线的对称轴为直线 $x = 1$。

∴ 点 $Q(1, 1)$，如图 2，

设点 $P(x, -\frac{1}{2}x^2 + x + 4)(1 < x < 4)$，

过点 P 作 $PG \perp I$ 于 G，过点 R 作 $RH \perp I$ 于 H，

∴ $PG = x - 1$，$GQ = -\frac{1}{2}x^2 + x + 4 - 1 = -\frac{1}{2}x^2 + x + 3$，

∴ $PG \perp I$，∴ $\angle PGQ = 90^\circ$，

∴ $\angle GPQ + \angle PQG = 90^\circ$，

∴ $\triangle PQR$ 是以点 Q 为直角顶点的等腰直角三角形，

∴ $PQ = RQ$，$\angle PQR = 90^\circ$，

∴ $\angle PQG + \angle RQH = 90^\circ$，

∴ $\angle GPQ = \angle HQR$，

∴ $\triangle PQG \cong \triangle RQH (AAS)$，

∴ $RH = GQ = -\frac{1}{2}x^2 + x + 3$，$QH = PG = x - 1$。
∴ $R \left(-\frac{1}{2}x^2+x+4, \ 2-x \right)$.

由①知，直线 BD 的解析式为 $y=-\frac{1}{2}x^2+2$.

∴ $x=2$ 或 $x=4$（舍）.

当 $x=2$ 时，$y=-\frac{1}{2}x^2+x+4=-\frac{1}{2}\times4+2+4=4$，

∴ $P \left(2, \ 4 \right)$.

23. （8 分）（2020•济宁）我们把方程 $(x-m)^2+(y-n)^2=r^2$ 称为圆心为 $(m, \ n)$、半径长为 r 的圆的标准方程．例如，圆心为 $(1, \ -2)$、半径长为 3 的圆的标准方程是 $(x-1)^2+(y+2)^2=9$．在平面直角坐标系中，$\odot C$ 与轴交于点 $A, \ B$，且点 B 的坐标为 $(8, \ 0)$，与 y 轴相切于点 $D (0, \ 4)$，过点 $A, \ B, \ D$ 的抛物线的顶点为 E．

（1）求 $\odot C$ 的标准方程：

（2）试判断直线 AE 与 $\odot C$ 的位置关系，并说明理由．
【答案】见解析。

【分析】（1）如图，连接 CD，CB，CD 过点 C 作 CM 垂直于 AB 于 M，设 C 的半径为 r。在 $Rt\triangle BCM$ 中，利用勾股定理求出半径以及 C 的坐标即可解决问题。

（2）结论：AE 是 $\odot C$ 的切线。连接 AC，CE。求出抛物线的解析式，推出点 E 的坐标，求出 AC，AE，CE，利用勾股定理的逆定理证明 $\angle CAE=90^\circ$ 即可解决问题。

【解析】（1）如图，连接 CD，CB，CD 过点 C 作 CM 垂直于 AB 于 M，设 C 的半径为 r。

∵ y 轴相切于点 $D(0, 4)$，

∴ $CD \perp OD$，

∴ $\angle CDO=\angle CMO=\angle DOM=90^\circ$，

∴ 四边形 $ODCM$ 是矩形，

∴ $CM=OD=4$，$CD=OM=r$，

∴ $B(8, 0)$，

∴ $OB=8$，

∴ $BM=8-r$。

在 $Rt\triangle CMB$ 中，∴ $BC^2=CM^2+BM^2$，

∴ $r^2=4^2+(8-r)^2$，

解得 $r=5$，

∴ $C(5, 4)$，

∴ $\odot C$ 的标准方程为 $(x-5)^2+(y-4)^2=25$。

（2）结论：AE 是 $\odot C$ 的切线。

理由：连接 AC，CE。
∵ $CM \perp AB$，

∴ $AM = BM = 3$，

$A (2, 0), B (8, 0)$

设抛物线的解析式为 $y = a (x - 2)(x - 8)$，

把 $D (0, 4)$ 代入 $y = a (x - 2)(x - 8)$，可得 $a = \frac{1}{4}$。

∴ 抛物线的解析式为 $y = \frac{1}{4} (x - 2)(x - 8) = \frac{1}{4}x^2 - \frac{5}{2}x + 4 = \frac{1}{4} (x - 5)^2 - \frac{9}{4}$。

∵ 抛物线的顶点 $E (5, \frac{-9}{4})$，

∴ $AE = \sqrt{3^2 + (\frac{9}{4})^2} = \frac{15}{4}$，$CE = 4 + \frac{9}{4} = \frac{25}{4}$，$AC = 5$。

∴ $EC^2 = AC^2 + AE^2$，

∴ $\angle CAE = 90^\circ$，

∴ $CA \perp AE$，

∴ AE 是 $\odot C$ 的切线。

24. (12 分) (2020・甘孜州) 如图，在平面直角坐标系 xOy 中，直线 $y = kx+3$ 分别交 x 轴、y 轴于 A, B 两点，经过 A, B 两点的抛物线 $y = -x^2 + bx + c$ 与 x 轴的正半轴相交于点 $C (1, 0)$。

（1）求抛物线的解析式；

（2）若 P 为线段 AB 上一点，$\angle APO = \angle ACB$，求 AP 的长；
（3）在（2）的条件下，设 M 是 y 轴上一点，试问：抛物线上是否存在点 N，使得以 A, P, M, N 为顶点的四边形为平行四边形？若存在，求出点 N 的坐标；若不存在，请说明理由．

【答案】见解析。

【分析】(1) 利用待定系数法解决问题即可．

(2) 求出 AB, OA, AC，利用相似三角形的性质求解即可．

(3) 分两种情形：① PA 为平行四边形的边时，点 M 的横坐标可以为 ±2，求出点 M 的坐标即可解决问题．②当 AP 为平行四边形的对角线时，点 M' 的横坐标为 -4，求出点 M' 的坐标即可解决问题．

【解析】(1) 由题意抛物线经过 $B(0, 3)$, $C(1, 0)$,

$$\begin{cases} c = 3 \\ -1 + b + c = 0 \end{cases}$$

解得 $\begin{cases} b = -2 \\ c = 3 \end{cases}$，

∴ 抛物线的解析式为 $y = -x^2 - 2x + 3$．

（2）对于抛物线 $y = -x^2 - 2x + 3$，令 $y = 0$，解得 $x = -3$ 或 1，

∴ $A(-3, 0)$，

∴ $B(0, 3)$, $C(1, 0)$，

∴ $OA = OB = 3OC = 1$, $AB = 3\sqrt{2}$，

∴ $\angle APO = \angle ACB$, $\angle PAO = \angle CAB$，

∴ $\triangle PAO \sim \triangle CAB$．
25. (12 分)（2020•聊城）如图，二次函数 $y=ax^2+bx+4$ 的图象与 x 轴交于点 $A(-1, 0)$，$B(4, 0)$，与 y 轴交于点 C，抛物线的顶点为 D，其对称轴与线段 BC 交于点 E，垂直于 x 轴的动直线 l 分别交抛物线和线段 BC 于点 P 和点 F，动直线 l 在抛物线的对称轴的右侧（不含对称轴）沿 x 轴正方向移动到 B 点．

（1）求出二次函数 $y=ax^2+bx+4$ 和 BC 所在直线的表达式；

（2）在动直线 l 移动的过程中，试求使四边形 $DEFP$ 为平行四边形的点 P 的坐标；

（3）连接 $CP，CD$，在动直线 l 移动的过程中，抛物线上是否存在点 P，使得以点 $P，C，F$ 为顶点的三角
形与\(\triangle DCE\)相似？如果存在，求出点\(P\)的坐标；如果不存在，请说明理由.

【答案】见解析。

【分析】（1）由题意得出方程组，求出二次函数的解析式为\(y = -x^2 + 3x + 4\)，则\(C(0, 4)\)，由待定系数法求出\(BC\)所在直线的表达式即可。

（2）证\(DE//PF\)，只要\(DE=PF\)，四边形\(DEFP\)即为平行四边形，由二次函数解析式求出点\(D\)的坐标，由直线\(BC\)的解析式求出点\(E\)的坐标，则\(DE=\frac{15}{4}\)，设点\(P\)的横坐标为\(t\)，则\(P\)的坐标为：\((t, -t^2 + 3t + 4)\)，\(F\)的坐标为：\((t, -t + 4)\)，由\(DE=PF\)得出方程，解方程进而得出答案。

（3）由平行线的性质得出\(\angle CED=\angle CFP\)，当\(\angle PCF=\angle CDE\)时，\(\triangle PCF\sim\triangle CDE\)，则\(\frac{PF}{CE} = \frac{CF}{DE}\)得出方程，解方程即可。

【解析】（1）将点\(A(-1, 0), B(4, 0)\)，代入\(y=ax^2 + bx + 4\)，得：

\[
\begin{cases}
0 = a - b + 4 \\
0 = 16a + 4b + 4
\end{cases}
\]

解得：

\[
\begin{cases}
a = -1 \\
b = 3
\end{cases}
\]

∴二次函数的解析式为：\(y = -x^2 + 3x + 4\)。

当\(x=0\)时，\(y=4\)。

∴\(C(0, 4)\)。

设\(BC\)所在直线的表达式为：\(y=mx+n\)，

将\(C(0, 4), B(4, 0)\)代入\(y=mx+n\)，
得：\[
\begin{align*}
4 &= m + n \\
0 &= 4m + n
\end{align*}
\]

解得：\[
\begin{align*}
m &= -1 \\
n &= 4
\end{align*}
\]∴BC所在直线的表达式为：$y = -x + 4$；

（2）∵$DE \perp x$轴，$PF \perp x$轴，

∴$DE \parallel PF$，只要$DE = PF$，四边形$DEPF$即为平行四边形，

∴$y = -x^2 + 3x + 4 = - (x - \frac{3}{2})^2 + \frac{25}{4}$；

∴点D的坐标为：\((\frac{3}{2}, \frac{25}{4})\)；

将$x = \frac{3}{2}$代入$y = -x + 4$，即$y = -\frac{3}{2} + 4 = \frac{5}{2}$；

∴点E的坐标为：\((\frac{3}{2}, \frac{5}{2})\)；

∴$DE = \frac{25}{4} - \frac{5}{2} = \frac{15}{4}$；

设点P的横坐标为t，则P的坐标为：\((t, -t^2 + 3t + 4)\)，F的坐标为：\((t, -t + 4)\)；

∴$PF = -t^2 + 3t + 4 - (-t + 4) = -t^2 + 4t$；

由$DE = PF$得：$-t^2 + 4t = \frac{15}{4}$；

解得：$t_1 = \frac{3}{2}$（不合题意舍去），$t_2 = \frac{5}{2}$；

当$t = \frac{5}{2}$时，$-t^2 + 3t + 4 = - (\frac{5}{2})^2 + 3 \times \frac{5}{2} + 4 = \frac{21}{4}$；

∴点P的坐标为：\((\frac{5}{2}, \frac{21}{4})\)；
（3）存在，理由如下：

如图所示，

由（2）得：PF∥DE，
∴∠CED=∠CFP，

又∵∠PCF 与∠DCE 有共同的顶点 C，且∠PCF 在∠DCE 的内部，
∴∠PCF≠∠DCE，
∴只有∠PCF=∠CDE 时，△PCF∽△CDE，

\[\frac{PF}{CE} = \frac{CF}{DE} \]

∵C（0, 4）、E（3/2, 5/2）

\[CE = \sqrt{\left(\frac{3}{2}\right)^2 + \left(4 - \frac{5}{2}\right)^2} = \frac{3\sqrt{2}}{2} \]

由（2）得：DE=15/4，PF=−t^2+4t，F 的坐标为：(t, −t+4)，
∴CF=\sqrt{t^2 + [4 − (−t + 4)]^2} = \sqrt{2t}，

\[\frac{-t^2+4t}{\frac{3\sqrt{2}}{2}} = \frac{\sqrt{2t}}{\frac{15}{4}} \]

∴t≠0，
∴\[\frac{15}{4} (−t+4) = 3, \]

解得：t=16/5，
当t=16/5 时，−t^2+3t+4 = −\left(\frac{16}{5}\right)^2+3×\frac{16}{5}+4 = \frac{84}{25}，
∴点 P 的坐标为：(\frac{16}{5}, \frac{84}{25})
26. (8 分)（2020•黔东南州）黔东南州某超市购进甲、乙两种商品，已知购进 3 件甲商品和 2 件乙商品，需 60 元；购进 2 件甲商品和 3 件乙商品，需 65 元。

（1）甲、乙两种商品的进货单价分别是多少？

（2）设甲商品的销售单价为 x（单位：元/件），在销售过程中发现：当 11≤x≤19 时，甲商品的日销售量 y（单位：件）与销售单价 x 之间存在一次函数关系，x、y 之间的部分数值对应关系如表：

<table>
<thead>
<tr>
<th>销售单价 x（元/件）</th>
<th>11</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>日销售量 y（件）</td>
<td>18</td>
<td>2</td>
</tr>
</tbody>
</table>

请写出当 11≤x≤19 时，y 与 x 之间的函数关系式。

（3）在（2）的条件下，设甲商品的日销售利润为 w 元，当甲商品的销售单价 x（元/件）定为多少时，日销售利润最大？最大利润是多少？

【分析】（1）设甲、乙两种商品的进货单价分别是 a、b 元/件，由题意得关于 a、b 的二元一次方程组，求解即可。

（2）设 y 与 x 之间的函数关系式为 y=kx+b，用待定系数法求解即可。

（3）根据利润等于每件的利润乘以销售量列出函数关系式，然后写成顶点式，按照二次函数的性质可得答案。

【解析】（1）设甲、乙两种商品的进货单价分别是 a、b 元/件，由题意得：

\[
\begin{align*}
3a + 2b &= 60 \\
2a + 3b &= 65
\end{align*}
\]
解得：\[\begin{align*}
& a = 10 \\
& b = 15
\end{align*} \]

∴甲、乙两种商品的进货单价分别是 10、15 元/件.

（2）设 \(y \) 与 \(x \) 之间的函数关系式为 \(y = k_1 x + b_1 \)，将 \((11, 18), (19, 2)\) 代入得：

\[\begin{align*}
11k_1 + b_1 &= 18 \\
19k_1 + b_1 &= 2
\end{align*} \]

解得：\[\begin{align*}
k_1 &= -2 \\
b_1 &= 40
\end{align*} \]

∴ \(y \) 与 \(x \) 之间的函数关系式为 \(y = -2x + 40 (11 \leq x \leq 19) \).

（3）由题意得：

\[
w = (-2x + 40)(x - 10)
\]

\[
= -2x^2 + 60x - 400
\]

\[
= -2(x - 15)^2 + 50 (11 \leq x \leq 19).
\]

∴当 \(x = 15 \) 时，\(w \) 取得最大值 50.

∴当甲商品的销售单价定为 15 元/件时，日销售利润最大，最大利润是 50 元.